4.5 KiB
lecture, date
lecture | date |
---|---|
30 | 2025-05-08 |
Integrals over Real Line - Residue Theorem
(Continuing from the previous lecture)
- Something similar can be done for the lower half plane
Check if the extra contribution goes to 0
- We need a criterion to decide when
\int_{H_{R}} f(z) \, dz
goes to zero forR \to \infty
.
Lemma
Let H_{R}
be as above.
Suppose that \mid f(z) \mid \leq M_{R}
for all z \in H_{R}
, where M_{R}
depends only on the radius R
.
If \lim_{ R \to \infty } M_{R} \times R = 0
then \lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0
.
Proof
Using \mid f(z) \mid \leq M_{R}
we have
\mid \int_{H_{R}} f(z) \, dz \mid \leq \int_{H_{R}} \mid f(z) \mid \, dz
\leq M_{R} \int_{H_{R}} 1 \, dz = M_{R} \times \pi R
Then we get
\lim_{ R \to \infty } \mid \int_{H_{R}} \, dz \leq pi \times \lim_{ R \to \infty }
(incomplete equation)
Example
Consider the function f(x) = \frac{1}{1+x^2}
.
We want to compute \int_{-\infty}^{+\infty} f(x) \, dx
.
We can use the previous results.
We extend f
to the complex-valued function
f(z) = \frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)}
We have two singularities, but only one in the upper half-plane, that is z=i
.
(Quick and dirty computation to check)
Let's assume for now that \lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0
then
\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = 2\pi i \times \text{Res}_{z=i} \frac{1}{1+z^2}
= 2\pi i \times \lim_{ z \to i } (z - i) \frac{1}{(z-i)(z+i)}
= 2\pi i \times \frac{1}{2i} = \pi
Now we check that the integral over H_{R}
goes to zero using the lemma.
We can use the Reverse Triangle Inequality | \|u \|- \| v \| \mid \leq \|u - v \|
, valid for any Norm \| \cdot \|
. we obtain
\mid z^2 + 1 \mid = \mid z^2 - (-1) \mid
\geq | |z|^{2} - 1 |
= R^{2} - 1 \ \text{(For}\ R \gt 1\text{)}
Then
| f(z) | = \frac{1}{| 1 + z^2 |} \leq \frac{1}{R^2 -1}
We take M_{R} = \frac{1}{R^2 - 1}
. We get
\lim_{ R \to \infty } M_{R} \times R = \lim_{ R \to \infty } \frac{R}{R^2 - 1} = 0
This gives the result for our original integral \int_{-\infty}^{+\infty} f(x) \, dx
.
Fourier Transform (Applications)
These correspond to integrals of the following type
\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{i\omega t} \, dt
We can use the Residue Theorem to compute some of these integrals.
Example
Consider f(t) = \frac{1}{a^2 + t^2}
where a \gt 0
.
We want to compute the Fourier transform
\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt
We apply the Residue Theorem to
g(z) = \frac{e^{i \omega z}}{a^2 + z^2}
We need to distinguish between the two cases where \omega \geq 0
and \omega \lt 0
.
Write z = x + iy
and consider
|e^{i \omega g z} | = | e^{i \omega x} e^{- \omega y} | = e^{-\omega y}
This either decays or grows depending on the sign of \omega
.
For \omega \geq 0
we get
| g(z) | = \frac{e^{-\omega y}}{| a^2 + z^2 |}
Which goes to zero in the upper half-plane (where y \geq 0
).
Then the path gives the result:
\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt = 2 \pi i \times \text{Res}_{z = ia}\ g(z)
[!note] Note that
z^2 + a^2 = (z + ia)(z-ia)
withz = ia
in the upper half-plane
= 2 \pi i \times \lim_{ z \to ia } (z-ia) \times \frac{e^{i \omega z}}{(z-ia)(z+ia)}
= 2\pi i \times \frac{e^{-\omega a}}{2ia} = \frac{\pi}{a}e^{-\omega a}
This is valid for \omega \geq 0
.
For \omega \lt 0
, we want to close the path in the lower half-plane (that is y \leq 0
).
This is so that | e^{i \omega z} | = e^{- \omega y}
does not blow up.
Then we consider that the lower half has to go in a clockwise direction (which is the opposite direction to what angles on a complex plane usually go). Note that this has negative orientation (clockwise) to apply the Residue Theorem (which needs positive orientation) we add a minus sign.
Then we compute
\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt
Here we need the poles of g(z)
in the lower half-plane (which is z = -ia
). Also to compensate for going in the clockwise direction we add the extra minus:
= -2\pi i \times \text{Res}_{z = -ia} g(z)
= - 2 \pi i \times \lim_{ z \to -ia } (z + ia) \frac{e^{i \omega z}}{(z + ia)(z-ia)} = -2 \pi i \times \frac{e^{\omega a}}{-2 i a} = \frac{\pi}{a} e^{\omega a}
The two cases can be combined to give the result:
\widetilde{f}(\omega) = \frac{\pi}{a}e^{-a|\omega|}