--- lecture: 30 date: 2025-05-08 --- # Integrals over Real Line - Residue Theorem (Continuing from the previous lecture) - Something similar can be done for the **lower** half plane # Check if the extra contribution goes to 0 - We need a criterion to decide when $\int_{H_{R}} f(z) \, dz$ goes to zero for $R \to \infty$. ## Lemma Let $H_{R}$ be as above. Suppose that $\mid f(z) \mid \leq M_{R}$ for all $z \in H_{R}$, where $M_{R}$ depends only on the radius $R$. If $\lim_{ R \to \infty } M_{R} \times R = 0$ then $\lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0$. ### Proof Using $\mid f(z) \mid \leq M_{R}$ we have $$\mid \int_{H_{R}} f(z) \, dz \mid \leq \int_{H_{R}} \mid f(z) \mid \, dz$$ $$\leq M_{R} \int_{H_{R}} 1 \, dz = M_{R} \times \pi R$$ Then we get $$\lim_{ R \to \infty } \mid \int_{H_{R}} \, dz \leq pi \times \lim_{ R \to \infty } $$ (incomplete equation) ## Example Consider the function $f(x) = \frac{1}{1+x^2}$. We want to compute $\int_{-\infty}^{+\infty} f(x) \, dx$. We can use the previous results. We extend $f$ to the complex-valued function $$f(z) = \frac{1}{1+z^2} = \frac{1}{(z+i)(z-i)}$$ We have **two** [[singularities]], but only one in the **upper** half-plane, that is $z=i$. (Quick and dirty computation to check) Let's assume for now that $\lim_{ R \to \infty } \int_{H_{R}} f(z) \, dz = 0$ then $$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx = 2\pi i \times \text{Res}_{z=i} \frac{1}{1+z^2}$$ $$= 2\pi i \times \lim_{ z \to i } (z - i) \frac{1}{(z-i)(z+i)}$$ $$= 2\pi i \times \frac{1}{2i} = \pi$$ Now we check that the integral over $H_{R}$ goes to zero using the lemma. We can use the Reverse [[Triangle Inequality]] $| \|u \|- \| v \| \mid \leq \|u - v \|$, valid for any [[Norm]] $\| \cdot \|$. we obtain $$\mid z^2 + 1 \mid = \mid z^2 - (-1) \mid$$ $$\geq | |z|^{2} - 1 |$$ $$= R^{2} - 1 \ \text{(For}\ R \gt 1\text{)}$$ Then $$| f(z) | = \frac{1}{| 1 + z^2 |} \leq \frac{1}{R^2 -1}$$ We take $M_{R} = \frac{1}{R^2 - 1}$. We get $$\lim_{ R \to \infty } M_{R} \times R = \lim_{ R \to \infty } \frac{R}{R^2 - 1} = 0$$ This gives the result for our original integral $\int_{-\infty}^{+\infty} f(x) \, dx$. # Fourier Transform (Applications) These correspond to integrals of the following type $$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} f(t) e^{i\omega t} \, dt $$ We can use the [[Residue Theorem]] to compute some of these integrals. ## Example Consider $f(t) = \frac{1}{a^2 + t^2}$ where $a \gt 0$. We want to compute the Fourier transform $$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt $$ We apply the [[Residue Theorem]] to $$g(z) = \frac{e^{i \omega z}}{a^2 + z^2}$$ We need to distinguish between the two cases where $\omega \geq 0$ and $\omega \lt 0$. Write $z = x + iy$ and consider $$|e^{i \omega g z} | = | e^{i \omega x} e^{- \omega y} | = e^{-\omega y}$$ This either decays or grows depending on the sign of $\omega$. For $\omega \geq 0$ we get $$| g(z) | = \frac{e^{-\omega y}}{| a^2 + z^2 |}$$ Which goes to zero in the **upper** half-plane (where $y \geq 0$). Then the path gives the result: $$\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt = 2 \pi i \times \text{Res}_{z = ia}\ g(z)$$ > [!note] Note that > $z^2 + a^2 = (z + ia)(z-ia)$ with $z = ia$ in the **upper** half-plane $$= 2 \pi i \times \lim_{ z \to ia } (z-ia) \times \frac{e^{i \omega z}}{(z-ia)(z+ia)}$$ $$= 2\pi i \times \frac{e^{-\omega a}}{2ia} = \frac{\pi}{a}e^{-\omega a}$$ This is valid for $\omega \geq 0$. For $\omega \lt 0$, we want to close the path in the **lower** half-plane (that is $y \leq 0$). This is so that $| e^{i \omega z} | = e^{- \omega y}$ does not blow up. Then we consider that the lower half has to go in a clockwise direction (which is the opposite direction to what angles on a complex plane usually go). Note that this has **negative** orientation (clockwise) to apply the [[Residue Theorem]] (which needs **positive orientation**) we add a **minus** sign. Then we compute $\widetilde{f}(\omega) = \int_{-\infty}^{+\infty} \frac{e^{i \omega t}}{a^2 + t^2} \, dt$ Here we need the poles of $g(z)$ in the **lower** half-plane (which is $z = -ia$). Also to compensate for going in the clockwise direction we add the extra minus: $$= -2\pi i \times \text{Res}_{z = -ia} g(z)$$ $$= - 2 \pi i \times \lim_{ z \to -ia } (z + ia) \frac{e^{i \omega z}}{(z + ia)(z-ia)} = -2 \pi i \times \frac{e^{\omega a}}{-2 i a} = \frac{\pi}{a} e^{\omega a}$$ The two cases can be combined to give the result: $$\widetilde{f}(\omega) = \frac{\pi}{a}e^{-a|\omega|}$$