2.5 KiB
lecture, date
lecture | date |
---|---|
15 | 2025-03-06 |
Lebesgue's Monotone Convergence Theorem
Say X
has a Measure \mu
, and let f_{n} : X \to [0, \infty]
be Measurable and f_{1} \leq f_{2} \leq f_{3} \leq \dots
.
Then \int f_{m} \, d\mu \to \int \lim_{ n \to \infty } f_{n} \, d\mu
as m \to \infty
.
[!note]- Left Integral:
\int f \, d\mu = \sup_{0 \leq s \leq f} \int s \, d\mu
Right Integral:
\lim_{ m \to \infty } \int f_{m} \, d\mu = \int \lim_{ m \to \infty } f_{m} \, d\mu
Proof
Note that f \equiv \lim_{ n \to \infty }f_{n} : X \to [0, \infty]
is a Measurable function as
[!note]-
\equiv
is Pointwise- To make
[0, \infty]
, you can do "$[0, a\rangle, \langle a, b \rangle, \langle b, \infty]$"
f^{-1}([0, a\rangle) = \cap_{n=1}^{\infty} \underbrace{f_{n}^{-1}([0, a \rangle)}_{\text{Measurable}}
[!note]- More on the right, measurable, function
x \in X
such thatf(x) \lt a
\implies f_{n}(x) \leq f(x) < a\ \forall n
f_{n}(x) \lt a\ \forall n
\implies f(x) < a
Let b \equiv \lim_{ n \to \infty } \int f_{n} \, d\mu \leq \int f \, d\mu
as f_{n} \leq f
.
Let 0 \leq s \leq f
, s
Measure simple, and c \in \langle 0, 1 \rangle
.
Let A_{n} = \{ x \in X \, | \, c \times s(x) \leq f_{n}(x) \} = (\underbrace{f_{n} - cs}_{measurable function})^{-1}(\underbrace{[0, \infty]}_{open})
.
Then A_{1} \subset A_{2} \subset A_{3} \subset \dots
Measurable, and \cup_{n} A_{n} \overbrace{=}^{\text{(*)}} X
[!note] Continuing (*) Say
x \in X
. Iff(x) = 0
, thenx \in A_{1}
. Iff(x) \gt 0
, thenc \times s(x) \lt f(x)
, soc \times s(x) \lt f_{n}(x)
for somen
, andx \in A_{n}
.By the previous two lemmas, we have
b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu
[!note]- Note on the
A_{n}
\int_{A} \subset \int_{X}
A \subset X
= c \lim_{ n \to \infty } \int_{A_{n}} s \, d\mu \overbrace{=}^{\text{2 lemmas}} c \times \int_{\cup A_{n}} s \, d\mu = c \times \int s \, d\mu
, sob \geq c \times \int f \, d\mu
andb \geq \int f \, d\mu
[!info]- Reminder of the two lemmas
A \mapsto \int_{A} s \, d\mu
Measure (s = 1 \implies \int_{A} s \, d\mu = \mu(A)
)- For any measure
\nu
andA_{1} \subset A_{2} \subset \dots
Measurable\implies \nu(\cup A_{n}) = \lim_{ n \to \infty } \nu(A_{n})
QED.