Quartz sync: Mar 6, 2025, 11:20 AM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 1m7s

This commit is contained in:
Anthony Berg 2025-03-06 11:20:27 +01:00
parent f0460f0309
commit acb9019626
2 changed files with 52 additions and 0 deletions

View File

@ -0,0 +1,51 @@
---
lecture: 15
date: 2025-03-06
---
# Lebesgue's Monotone Convergence Theorem
Say $X$ has a [[Measure|measure]] $\mu$, and let $f_{n} : X \to [0, \infty]$ be [[Measurable|measurable]] and $f_{1} \leq f_{2} \leq f_{3} \leq \dots$.
Then $\int f_{m} \, d\mu \to \int \lim_{ n \to \infty } f_{n} \, d\mu$ as $m \to \infty$.
> [!note]-
> **Left Integral:**
> $\int f \, d\mu = \sup_{0 \leq s \leq f} \int s \, d\mu$
>
> **Right Integral:**
> $\lim_{ m \to \infty } \int f_{m} \, d\mu = \int \lim_{ m \to \infty } f_{m} \, d\mu$
## Proof
Note that $f \equiv \lim_{ n \to \infty }f_{n} : X \to [0, \infty]$ is a [[Measurable|measurable]] function as
> [!note]-
> - $\equiv$ is [[Pointwise|pointwise]]
> - To make $[0, \infty]$, you can do "$[0, a\rangle, \langle a, b \rangle, \langle b, \infty]$"
$f^{-1}([0, a\rangle) = \cap_{n=1}^{\infty} \underbrace{f_{n}^{-1}([0, a \rangle)}_{\text{Measurable}}$
> [!note]- More on the right, measurable, function
> $x \in X$ such that
> $f(x) \lt a$
> $\implies f_{n}(x) \leq f(x) < a\ \forall n$
> $f_{n}(x) \lt a\ \forall n$
> $\implies f(x) < a$
Let $b \equiv \lim_{ n \to \infty } \int f_{n} \, d\mu \leq \int f \, d\mu$ as $f_{n} \leq f$.
Let $0 \leq s \leq f$, $s$ [[Measure|measure]] simple, and $c \in \langle 0, 1 \rangle$.
Let $A_{n} = \{ x \in X \, | \, c \times s(x) \leq f_{n}(x) \} = (\underbrace{f_{n} - cs}_{measurable function})^{-1}(\underbrace{[0, \infty]}_{open})$.
Then $A_{1} \subset A_{2} \subset A_{3} \subset \dots$ [[Measurable|measurable]], and $\cup_{n} A_{n} \overbrace{=}^{\text{(*)}} X$
> [!note] Continuing (\*)
> Say $x \in X$.
> If $f(x) = 0$, then $x \in A_{1}$.
> If $f(x) \gt 0$, then $c \times s(x) \lt f(x)$, so $c \times s(x) \lt f_{n}(x)$ for some $n$, and $x \in A_{n}$.
>
> By the previous two lemmas, we have
> $b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu$
> > [!note]- Note on the $A_{n}$
> > $$\int_{A} \subset \int_{X}$$
> > $$A \subset X$$
>
> $= c \lim_{ n \to \infty } \int_{A_{n}} s \, d\mu \overbrace{=}^{\text{2 lemmas}} c \times \int_{\cup A_{n}} s \, d\mu = c \times \int s \, d\mu$, so $b \geq c \times \int f \, d\mu$ and $b \geq \int f \, d\mu$
>
> > [!info]- Reminder of the two lemmas
> > 1. $A \mapsto \int_{A} s \, d\mu$ [[Measure|measure]] ($s = 1 \implies \int_{A} s \, d\mu = \mu(A)$)
> > 2. For any measure $\nu$ and $A_{1} \subset A_{2} \subset \dots$ [[Measurable|measurable]] $\implies \nu(\cup A_{n}) = \lim_{ n \to \infty } \nu(A_{n})$
QED.

View File

@ -22,3 +22,4 @@ title: ACIT4330 Lecture Notes
# Measure Theory
- [[Lecture 13 - Measure Theory]]
- [[Lecture 14]]
- [[Lecture 15]]