diff --git a/content/Lectures/Lecture 15.md b/content/Lectures/Lecture 15.md new file mode 100644 index 00000000..e4837849 --- /dev/null +++ b/content/Lectures/Lecture 15.md @@ -0,0 +1,51 @@ +--- +lecture: 15 +date: 2025-03-06 +--- +# Lebesgue's Monotone Convergence Theorem +Say $X$ has a [[Measure|measure]] $\mu$, and let $f_{n} : X \to [0, \infty]$ be [[Measurable|measurable]] and $f_{1} \leq f_{2} \leq f_{3} \leq \dots$. + +Then $\int f_{m} \, d\mu \to \int \lim_{ n \to \infty } f_{n} \, d\mu$ as $m \to \infty$. +> [!note]- +> **Left Integral:** +> $\int f \, d\mu = \sup_{0 \leq s \leq f} \int s \, d\mu$ +> +> **Right Integral:** +> $\lim_{ m \to \infty } \int f_{m} \, d\mu = \int \lim_{ m \to \infty } f_{m} \, d\mu$ +## Proof +Note that $f \equiv \lim_{ n \to \infty }f_{n} : X \to [0, \infty]$ is a [[Measurable|measurable]] function as +> [!note]- +> - $\equiv$ is [[Pointwise|pointwise]] +> - To make $[0, \infty]$, you can do "$[0, a\rangle, \langle a, b \rangle, \langle b, \infty]$" + +$f^{-1}([0, a\rangle) = \cap_{n=1}^{\infty} \underbrace{f_{n}^{-1}([0, a \rangle)}_{\text{Measurable}}$ +> [!note]- More on the right, measurable, function +> $x \in X$ such that +> $f(x) \lt a$ +> $\implies f_{n}(x) \leq f(x) < a\ \forall n$ +> $f_{n}(x) \lt a\ \forall n$ +> $\implies f(x) < a$ + +Let $b \equiv \lim_{ n \to \infty } \int f_{n} \, d\mu \leq \int f \, d\mu$ as $f_{n} \leq f$. +Let $0 \leq s \leq f$, $s$ [[Measure|measure]] simple, and $c \in \langle 0, 1 \rangle$. +Let $A_{n} = \{ x \in X \, | \, c \times s(x) \leq f_{n}(x) \} = (\underbrace{f_{n} - cs}_{measurable function})^{-1}(\underbrace{[0, \infty]}_{open})$. + +Then $A_{1} \subset A_{2} \subset A_{3} \subset \dots$ [[Measurable|measurable]], and $\cup_{n} A_{n} \overbrace{=}^{\text{(*)}} X$ +> [!note] Continuing (\*) +> Say $x \in X$. +> If $f(x) = 0$, then $x \in A_{1}$. +> If $f(x) \gt 0$, then $c \times s(x) \lt f(x)$, so $c \times s(x) \lt f_{n}(x)$ for some $n$, and $x \in A_{n}$. +> +> By the previous two lemmas, we have +> $b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu$ +> > [!note]- Note on the $A_{n}$ +> > $$\int_{A} \subset \int_{X}$$ +> > $$A \subset X$$ +> +> $= c \lim_{ n \to \infty } \int_{A_{n}} s \, d\mu \overbrace{=}^{\text{2 lemmas}} c \times \int_{\cup A_{n}} s \, d\mu = c \times \int s \, d\mu$, so $b \geq c \times \int f \, d\mu$ and $b \geq \int f \, d\mu$ +> +> > [!info]- Reminder of the two lemmas +> > 1. $A \mapsto \int_{A} s \, d\mu$ [[Measure|measure]] ($s = 1 \implies \int_{A} s \, d\mu = \mu(A)$) +> > 2. For any measure $\nu$ and $A_{1} \subset A_{2} \subset \dots$ [[Measurable|measurable]] $\implies \nu(\cup A_{n}) = \lim_{ n \to \infty } \nu(A_{n})$ + +QED. \ No newline at end of file diff --git a/content/index.md b/content/index.md index ad2ac304..c8789e1a 100644 --- a/content/index.md +++ b/content/index.md @@ -22,3 +22,4 @@ title: ACIT4330 Lecture Notes # Measure Theory - [[Lecture 13 - Measure Theory]] - [[Lecture 14]] +- [[Lecture 15]]