Compare commits

..

4 Commits

Author SHA1 Message Date
Aaron Pham
7a335c7a5b chore: update in favor of prose
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-07-08 22:51:47 -04:00
Aaron Pham
863a394a37 Apply suggestion from @jackyzha0
Co-authored-by: Jacky Zhao <j.zhao2k19@gmail.com>
2025-07-08 22:51:13 -04:00
Aaron Pham
ba2b8bb0c5 Update .github/pull_request_template.md 2025-07-08 16:16:32 -04:00
Aaron Pham
79e7e782ac chore: add PR templates
Signed-off-by: Aaron Pham <contact@aarnphm.xyz>
2025-07-08 15:44:41 -04:00
45 changed files with 1078 additions and 3658 deletions

View File

@@ -11,12 +11,12 @@ jobs:
runs-on: ubuntu-latest
name: Build Preview
steps:
- uses: actions/checkout@v5
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Node
uses: actions/setup-node@v5
uses: actions/setup-node@v4
with:
node-version: 22

View File

@@ -19,12 +19,12 @@ jobs:
permissions:
contents: write
steps:
- uses: actions/checkout@v5
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Node
uses: actions/setup-node@v5
uses: actions/setup-node@v4
with:
node-version: 22
@@ -53,11 +53,11 @@ jobs:
permissions:
contents: write
steps:
- uses: actions/checkout@v5
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Node
uses: actions/setup-node@v5
uses: actions/setup-node@v4
with:
node-version: 22
- name: Get package version

View File

@@ -18,7 +18,7 @@ jobs:
name: Deploy Preview to Cloudflare Pages
steps:
- name: Download build artifact
uses: actions/download-artifact@v5
uses: actions/download-artifact@v4
id: preview-build-artifact
with:
name: preview-build

View File

@@ -21,11 +21,11 @@ jobs:
echo "OWNER_LOWERCASE=${OWNER,,}" >> ${GITHUB_ENV}
env:
OWNER: "${{ github.repository_owner }}"
- uses: actions/checkout@v5
- uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Inject slug/short variables
uses: rlespinasse/github-slug-action@v5.2.0
uses: rlespinasse/github-slug-action@v5.1.0
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
@@ -37,7 +37,7 @@ jobs:
network=host
- name: Install cosign
if: github.event_name != 'pull_request'
uses: sigstore/cosign-installer@v3.10.0
uses: sigstore/cosign-installer@v3.9.1
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
if: github.event_name != 'pull_request'

View File

@@ -34,8 +34,6 @@ This part of the configuration concerns anything that can affect the whole site.
- `{ provider: 'tinylytics', siteId: '<your-site-id>' }`: use [Tinylytics](https://tinylytics.app/);
- `{ provider: 'cabin' }` or `{ provider: 'cabin', host: 'https://cabin.example.com' }` (custom domain): use [Cabin](https://withcabin.com);
- `{provider: 'clarity', projectId: '<your-clarity-id-code' }`: use [Microsoft clarity](https://clarity.microsoft.com/). The project id can be found on top of the overview page.
- `{ provider: 'matomo', siteId: '<your-matomo-id-code', host: 'matomo.example.com' }`: use [Matomo](https://matomo.org/), without protocol.
- `{ provider: 'vercel' }`: use [Vercel Web Analytics](https://vercel.com/docs/concepts/analytics).
- `locale`: used for [[i18n]] and date formatting
- `baseUrl`: this is used for sitemaps and RSS feeds that require an absolute URL to know where the canonical 'home' of your site lives. This is normally the deployed URL of your site (e.g. `quartz.jzhao.xyz` for this site). Do not include the protocol (i.e. `https://`) or any leading or trailing slashes.
- This should also include the subpath if you are [[hosting]] on GitHub pages without a custom domain. For example, if my repository is `jackyzha0/quartz`, GitHub pages would deploy to `https://jackyzha0.github.io/quartz` and the `baseUrl` would be `jackyzha0.github.io/quartz`.

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -15,7 +15,7 @@ However, if you'd like to publish your site to the world, you need a way to host
## Cloudflare Pages
1. Log in to the [Cloudflare dashboard](https://dash.cloudflare.com/) and select your account.
2. In Account Home, select **Compute (Workers)** > **Workers & Pages** > **Create application** > **Pages** > **Connect to Git**.
2. In Account Home, select **Workers & Pages** > **Create application** > **Pages** > **Connect to Git**.
3. Select the new GitHub repository that you created and, in the **Set up builds and deployments** section, provide the following information:
| Configuration option | Value |

View File

@@ -14,6 +14,10 @@ This plugin accepts the following configuration options:
- `renderEngine`: the engine to use to render LaTeX equations. Can be `"katex"` for [KaTeX](https://katex.org/), `"mathjax"` for [MathJax](https://www.mathjax.org/) [SVG rendering](https://docs.mathjax.org/en/latest/output/svg.html), or `"typst"` for [Typst](https://typst.app/) (a new way to compose LaTeX equation). Defaults to KaTeX.
- `customMacros`: custom macros for all LaTeX blocks. It takes the form of a key-value pair where the key is a new command name and the value is the expansion of the macro. For example: `{"\\R": "\\mathbb{R}"}`
> [!note] Typst support
>
> Currently, typst doesn't support inline-math
## API
- Category: Transformer

1
index.d.ts vendored
View File

@@ -13,4 +13,3 @@ interface CustomEventMap {
type ContentIndex = Record<FullSlug, ContentDetails>
declare const fetchData: Promise<ContentIndex>
declare const semanticCfg: import("./quartz/cfg").GlobalConfiguration["semanticSearch"]

1905
package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
"name": "@jackyzha0/quartz",
"description": "🌱 publish your digital garden and notes as a website",
"private": true,
"version": "4.5.2",
"version": "4.5.1",
"type": "module",
"author": "jackyzha0 <j.zhao2k19@gmail.com>",
"license": "MIT",
@@ -36,37 +36,36 @@
},
"dependencies": {
"@clack/prompts": "^0.11.0",
"@floating-ui/dom": "^1.7.4",
"@huggingface/transformers": "^3.7.5",
"@floating-ui/dom": "^1.7.0",
"@myriaddreamin/rehype-typst": "^0.6.0",
"@napi-rs/simple-git": "0.1.22",
"@napi-rs/simple-git": "0.1.19",
"@tweenjs/tween.js": "^25.0.0",
"ansi-truncate": "^1.4.0",
"@webgpu/types": "^0.1.61",
"ansi-truncate": "^1.2.0",
"async-mutex": "^0.5.0",
"chokidar": "^4.0.3",
"cli-spinner": "^0.2.10",
"d3": "^7.9.0",
"esbuild-sass-plugin": "^3.3.1",
"flexsearch": "^0.8.205",
"flexsearch": "0.7.43",
"github-slugger": "^2.0.0",
"globby": "^15.0.0",
"globby": "^14.1.0",
"gray-matter": "^4.0.3",
"hast-util-to-html": "^9.0.5",
"hast-util-to-jsx-runtime": "^2.3.6",
"hast-util-to-string": "^3.0.1",
"is-absolute-url": "^5.0.0",
"is-absolute-url": "^4.0.1",
"js-yaml": "^4.1.0",
"lightningcss": "^1.30.2",
"lightningcss": "^1.30.1",
"mdast-util-find-and-replace": "^3.0.2",
"mdast-util-to-hast": "^13.2.0",
"mdast-util-to-string": "^4.0.0",
"micromorph": "^0.4.5",
"minimatch": "^10.0.3",
"onnxruntime-web": "^1.23.0",
"pixi.js": "^8.13.2",
"preact": "^10.27.2",
"preact-render-to-string": "^6.6.1",
"pretty-bytes": "^7.1.0",
"minimatch": "^10.0.1",
"pixi.js": "^8.9.2",
"preact": "^10.26.7",
"preact-render-to-string": "^6.5.13",
"pretty-bytes": "^7.0.0",
"pretty-time": "^1.1.0",
"reading-time": "^1.5.0",
"rehype-autolink-headings": "^7.1.0",
@@ -85,9 +84,9 @@
"remark-rehype": "^11.1.2",
"remark-smartypants": "^3.0.2",
"rfdc": "^1.4.1",
"satori": "^0.18.3",
"satori": "^0.13.1",
"serve-handler": "^6.1.6",
"sharp": "^0.34.4",
"sharp": "^0.34.2",
"shiki": "^1.26.2",
"source-map-support": "^0.5.21",
"to-vfile": "^8.0.0",
@@ -95,22 +94,22 @@
"unified": "^11.0.5",
"unist-util-visit": "^5.0.0",
"vfile": "^6.0.3",
"workerpool": "^9.3.4",
"ws": "^8.18.3",
"workerpool": "^9.2.0",
"ws": "^8.18.2",
"yargs": "^18.0.0"
},
"devDependencies": {
"@types/d3": "^7.4.3",
"@types/hast": "^3.0.4",
"@types/js-yaml": "^4.0.9",
"@types/node": "^24.6.0",
"@types/node": "^22.15.23",
"@types/pretty-time": "^1.1.5",
"@types/source-map-support": "^0.5.10",
"@types/ws": "^8.18.1",
"@types/yargs": "^17.0.33",
"esbuild": "^0.25.10",
"prettier": "^3.6.2",
"tsx": "^4.20.6",
"typescript": "^5.9.2"
"esbuild": "^0.25.5",
"prettier": "^3.5.3",
"tsx": "^4.19.4",
"typescript": "^5.8.3"
}
}

View File

@@ -1,18 +1,6 @@
import { GlobalConfiguration, QuartzConfig } from "./quartz/cfg"
import { QuartzConfig } from "./quartz/cfg"
import * as Plugin from "./quartz/plugins"
const semanticSearch: GlobalConfiguration["semanticSearch"] = {
enable: true,
model: "onnx-community/embeddinggemma-300m-ONNX",
aot: true,
dims: 768,
dtype: "fp32",
shardSizeRows: 1024,
hnsw: { M: 16, efConstruction: 200 },
chunking: { chunkSize: 256, chunkOverlap: 64 },
vllm: { enable: true, concurrency: 16, batchSize: 128 },
}
/**
* Quartz 4 Configuration
*
@@ -64,7 +52,6 @@ const config: QuartzConfig = {
},
},
},
semanticSearch,
},
plugins: {
transformers: [
@@ -97,7 +84,6 @@ const config: QuartzConfig = {
enableSiteMap: true,
enableRSS: true,
}),
Plugin.SemanticIndex(semanticSearch),
Plugin.Assets(),
Plugin.Static(),
Plugin.Favicon(),

View File

@@ -151,19 +151,16 @@ async function startWatching(
const changes: ChangeEvent[] = []
watcher
.on("add", (fp) => {
fp = toPosixPath(fp)
if (buildData.ignored(fp)) return
changes.push({ path: fp as FilePath, type: "add" })
void rebuild(changes, clientRefresh, buildData)
})
.on("change", (fp) => {
fp = toPosixPath(fp)
if (buildData.ignored(fp)) return
changes.push({ path: fp as FilePath, type: "change" })
void rebuild(changes, clientRefresh, buildData)
})
.on("unlink", (fp) => {
fp = toPosixPath(fp)
if (buildData.ignored(fp)) return
changes.push({ path: fp as FilePath, type: "delete" })
void rebuild(changes, clientRefresh, buildData)

View File

@@ -42,14 +42,6 @@ export type Analytics =
provider: "clarity"
projectId?: string
}
| {
provider: "matomo"
host: string
siteId: string
}
| {
provider: "vercel"
}
export interface GlobalConfiguration {
pageTitle: string
@@ -78,34 +70,6 @@ export interface GlobalConfiguration {
* Region Codes: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
*/
locale: ValidLocale
/** Semantic search configuration */
semanticSearch?: {
enable: boolean
model: string
aot: boolean
dtype: "fp32" | "fp16"
dims: number
shardSizeRows: number
manifestUrl?: string
manifestBaseUrl?: string
disableCache?: boolean
hnsw: {
M: number
efConstruction: number
efSearch?: number
}
chunking: {
chunkSize: number
chunkOverlap: number
noChunking?: boolean
}
vllm?: {
enable: boolean
vllmUrl?: string
concurrency: number
batchSize: number
}
}
}
export interface QuartzConfig {

View File

@@ -55,14 +55,11 @@ export type FolderState = {
collapsed: boolean
}
let numExplorers = 0
export default ((userOpts?: Partial<Options>) => {
const opts: Options = { ...defaultOptions, ...userOpts }
const { OverflowList, overflowListAfterDOMLoaded } = OverflowListFactory()
const Explorer: QuartzComponent = ({ cfg, displayClass }: QuartzComponentProps) => {
const id = `explorer-${numExplorers++}`
return (
<div
class={classNames(displayClass, "explorer")}
@@ -80,7 +77,7 @@ export default ((userOpts?: Partial<Options>) => {
type="button"
class="explorer-toggle mobile-explorer hide-until-loaded"
data-mobile={true}
aria-controls={id}
aria-controls="explorer-content"
>
<svg
xmlns="http://www.w3.org/2000/svg"
@@ -119,7 +116,7 @@ export default ((userOpts?: Partial<Options>) => {
<polyline points="6 9 12 15 18 9"></polyline>
</svg>
</button>
<div id={id} class="explorer-content" aria-expanded={false} role="group">
<div class="explorer-content" aria-expanded={false}>
<OverflowList class="explorer-ul" />
</div>
<template id="template-file">

View File

@@ -12,9 +12,9 @@ const OverflowList = ({
)
}
let numLists = 0
let numExplorers = 0
export default () => {
const id = `list-${numLists++}`
const id = `list-${numExplorers++}`
return {
OverflowList: (props: JSX.HTMLAttributes<HTMLUListElement>) => (

View File

@@ -7,12 +7,10 @@ import { i18n } from "../i18n"
export interface SearchOptions {
enablePreview: boolean
includeButton: boolean
}
const defaultOptions: SearchOptions = {
enablePreview: true,
includeButton: true,
}
export default ((userOpts?: Partial<SearchOptions>) => {
@@ -22,6 +20,7 @@ export default ((userOpts?: Partial<SearchOptions>) => {
return (
<div class={classNames(displayClass, "search")}>
<button class="search-button">
<p>{i18n(cfg.locale).components.search.title}</p>
<svg role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 19.9 19.7">
<title>Search</title>
<g class="search-path" fill="none">
@@ -29,56 +28,20 @@ export default ((userOpts?: Partial<SearchOptions>) => {
<circle cx="8" cy="8" r="7" />
</g>
</svg>
<p>{i18n(cfg.locale).components.search.title}</p>
</button>
<search class="search-container">
<form class="search-space">
<div class="input-container">
<input
autocomplete="off"
class="search-bar"
name="search"
type="text"
aria-label={searchPlaceholder}
placeholder={searchPlaceholder}
/>
<div class="search-mode-toggle" role="radiogroup" aria-label="Search mode">
<button
type="button"
class="mode-option"
data-mode="lexical"
aria-pressed="true"
aria-label="Full-text search"
>
<svg viewBox="0 0 20 20" role="img" aria-hidden="true">
<g fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round">
<path d="M4 6h12M4 10h8M4 14h6" />
</g>
</svg>
<span class="sr-only">Full-text</span>
</button>
<button
type="button"
class="mode-option"
data-mode="semantic"
aria-pressed="false"
aria-label="Semantic search"
>
<svg viewBox="0 0 20 20" role="img" aria-hidden="true">
<g fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round">
<circle cx="5.2" cy="10" r="2.4" />
<circle cx="14.8" cy="4.8" r="2.1" />
<circle cx="14.8" cy="15.2" r="2.1" />
<path d="M7.1 8.7l5.2-2.4M7.1 11.3l5.2 2.4M14.8 6.9v6.2" />
</g>
</svg>
<span class="sr-only">Semantic</span>
</button>
</div>
</div>
<output class="search-layout" data-preview={opts.enablePreview} />
</form>
</search>
<div class="search-container">
<div class="search-space">
<input
autocomplete="off"
class="search-bar"
name="search"
type="text"
aria-label={searchPlaceholder}
placeholder={searchPlaceholder}
/>
<div class="search-layout" data-preview={opts.enablePreview}></div>
</div>
</div>
</div>
)
}

View File

@@ -17,7 +17,6 @@ const defaultOptions: Options = {
layout: "modern",
}
let numTocs = 0
export default ((opts?: Partial<Options>) => {
const layout = opts?.layout ?? defaultOptions.layout
const { OverflowList, overflowListAfterDOMLoaded } = OverflowListFactory()
@@ -30,13 +29,12 @@ export default ((opts?: Partial<Options>) => {
return null
}
const id = `toc-${numTocs++}`
return (
<div class={classNames(displayClass, "toc")}>
<button
type="button"
class={fileData.collapseToc ? "collapsed toc-header" : "toc-header"}
aria-controls={id}
aria-controls="toc-content"
aria-expanded={!fileData.collapseToc}
>
<h3>{i18n(cfg.locale).components.tableOfContents.title}</h3>
@@ -55,10 +53,7 @@ export default ((opts?: Partial<Options>) => {
<polyline points="6 9 12 15 18 9"></polyline>
</svg>
</button>
<OverflowList
id={id}
class={fileData.collapseToc ? "collapsed toc-content" : "toc-content"}
>
<OverflowList class={fileData.collapseToc ? "collapsed toc-content" : "toc-content"}>
{fileData.toc.map((tocEntry) => (
<li key={tocEntry.slug} class={`depth-${tocEntry.depth}`}>
<a href={`#${tocEntry.slug}`} data-for={tocEntry.slug}>

View File

@@ -25,7 +25,6 @@ const headerRegex = new RegExp(/h[1-6]/)
export function pageResources(
baseDir: FullSlug | RelativeURL,
staticResources: StaticResources,
cfg?: GlobalConfiguration,
): StaticResources {
const contentIndexPath = joinSegments(baseDir, "static/contentIndex.json")
const contentIndexScript = `const fetchData = fetch("${contentIndexPath}").then(data => data.json())`
@@ -49,12 +48,6 @@ export function pageResources(
spaPreserve: true,
script: contentIndexScript,
},
{
loadTime: "beforeDOMReady",
contentType: "inline",
spaPreserve: true,
script: `const semanticCfg = ${JSON.stringify(cfg?.semanticSearch ?? {})};`,
},
...staticResources.js,
],
additionalHead: staticResources.additionalHead,
@@ -238,9 +231,8 @@ export function renderPage(
)
const lang = componentData.fileData.frontmatter?.lang ?? cfg.locale?.split("-")[0] ?? "en"
const direction = i18n(cfg.locale).direction ?? "ltr"
const doc = (
<html lang={lang} dir={direction}>
<html lang={lang}>
<Head {...componentData} />
<body data-slug={slug}>
<div id="quartz-root" class="page">

View File

@@ -68,6 +68,30 @@ type TweenNode = {
stop: () => void
}
// workaround for pixijs webgpu issue: https://github.com/pixijs/pixijs/issues/11389
async function determineGraphicsAPI(): Promise<"webgpu" | "webgl"> {
const adapter = await navigator.gpu?.requestAdapter().catch(() => null)
const device = adapter && (await adapter.requestDevice().catch(() => null))
if (!device) {
return "webgl"
}
const canvas = document.createElement("canvas")
const gl =
(canvas.getContext("webgl2") as WebGL2RenderingContext | null) ??
(canvas.getContext("webgl") as WebGLRenderingContext | null)
// we have to return webgl so pixijs automatically falls back to canvas
if (!gl) {
return "webgl"
}
const webglMaxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS)
const webgpuMaxTextures = device.limits.maxSampledTexturesPerShaderStage
return webglMaxTextures === webgpuMaxTextures ? "webgpu" : "webgl"
}
async function renderGraph(graph: HTMLElement, fullSlug: FullSlug) {
const slug = simplifySlug(fullSlug)
const visited = getVisited()
@@ -349,6 +373,7 @@ async function renderGraph(graph: HTMLElement, fullSlug: FullSlug) {
tweens.forEach((tween) => tween.stop())
tweens.clear()
const pixiPreference = await determineGraphicsAPI()
const app = new Application()
await app.init({
width,
@@ -357,7 +382,7 @@ async function renderGraph(graph: HTMLElement, fullSlug: FullSlug) {
autoStart: false,
autoDensity: true,
backgroundAlpha: 0,
preference: "webgpu",
preference: pixiPreference,
resolution: window.devicePixelRatio,
eventMode: "static",
})

View File

@@ -1,7 +1,6 @@
import FlexSearch, { DefaultDocumentSearchResults, Id } from "flexsearch"
import FlexSearch from "flexsearch"
import { ContentDetails } from "../../plugins/emitters/contentIndex"
import { SemanticClient, type SemanticResult } from "./semantic.inline"
import { registerEscapeHandler, removeAllChildren, fetchCanonical } from "./util"
import { registerEscapeHandler, removeAllChildren } from "./util"
import { FullSlug, normalizeRelativeURLs, resolveRelative } from "../../util/path"
interface Item {
@@ -10,51 +9,42 @@ interface Item {
title: string
content: string
tags: string[]
[key: string]: any
}
// Can be expanded with things like "term" in the future
type SearchType = "basic" | "tags"
type SearchMode = "lexical" | "semantic"
const SEARCH_MODE_STORAGE_KEY = "quartz:search:mode"
const loadStoredSearchMode = (): SearchMode | null => {
if (typeof window === "undefined") {
return null
}
try {
const stored = window.localStorage.getItem(SEARCH_MODE_STORAGE_KEY)
return stored === "lexical" || stored === "semantic" ? stored : null
} catch (err) {
console.warn("[Search] failed to read stored search mode:", err)
return null
}
}
const persistSearchMode = (mode: SearchMode) => {
if (typeof window === "undefined") {
return
}
try {
window.localStorage.setItem(SEARCH_MODE_STORAGE_KEY, mode)
} catch (err) {
console.warn("[Search] failed to persist search mode:", err)
}
}
let searchMode: SearchMode = "lexical"
let searchType: SearchType = "basic"
let currentSearchTerm: string = ""
let rawSearchTerm: string = ""
let semantic: SemanticClient | null = null
let semanticReady = false
let semanticInitFailed = false
type SimilarityResult = { item: Item; similarity: number }
let chunkMetadata: Record<string, { parentSlug: string; chunkId: number }> = {}
let manifestIds: string[] = []
const encoder = (str: string) => str.toLowerCase().split(/([^a-z]|[^\x00-\x7F])/)
let index = new FlexSearch.Document<Item>({
charset: "latin:extra",
encode: encoder,
document: {
id: "id",
tag: "tags",
index: [
{
field: "title",
tokenize: "forward",
},
{
field: "content",
tokenize: "forward",
},
{
field: "tags",
tokenize: "forward",
},
],
},
})
const p = new DOMParser()
const fetchContentCache: Map<FullSlug, Element[]> = new Map()
const contextWindowWords = 30
const numSearchResults = 8
const numTagResults = 5
const tokenizeTerm = (term: string) => {
const tokens = term.split(/\s+/).filter((t) => t.trim() !== "")
const tokenLen = tokens.length
@@ -112,102 +102,6 @@ function highlight(searchTerm: string, text: string, trim?: boolean) {
}`
}
// To be used with search and everything else with flexsearch
const encoder = (str: string) =>
str
.toLowerCase()
.split(/\s+/)
.filter((token) => token.length > 0)
/**
* Get parent document slug for a chunk ID
*/
function getParentSlug(slug: string): string {
const meta = chunkMetadata[slug]
return meta ? meta.parentSlug : slug
}
/**
* Aggregate semantic search results from chunks to documents using RRF
* @param results Raw semantic results (chunk-level)
* @param slugToDocIndex Map from document slug to index in idDataMap
* @returns Object with rrfScores (for ranking) and maxScores (for display)
*/
function aggregateChunkResults(
results: SemanticResult[],
slugToDocIndex: Map<FullSlug, number>,
): { rrfScores: Map<number, number>; maxScores: Map<number, number> } {
// Group chunks by parent document
const docChunks = new Map<string, Array<{ score: number }>>()
results.forEach(({ id, score }) => {
// id is an index into manifestIds (the chunk IDs from embeddings)
const chunkSlug = manifestIds[id]
if (!chunkSlug) return
// Get parent document slug
const parentSlug = getParentSlug(chunkSlug)
if (!docChunks.has(parentSlug)) {
docChunks.set(parentSlug, [])
}
docChunks.get(parentSlug)!.push({ score })
})
// Apply RRF for ranking and track max similarity for display
const rrfScores = new Map<number, number>()
const maxScores = new Map<number, number>()
const RRF_K = 60
for (const [parentSlug, chunks] of docChunks) {
const docIdx = slugToDocIndex.get(parentSlug as FullSlug)
if (typeof docIdx !== "number") continue
// Sort chunks by score descending to assign per-document ranks
chunks.sort((a, b) => b.score - a.score)
// RRF formula: sum(1 / (k + rank)) across all chunks, using per-document ranks
const rrfScore = chunks.reduce((sum, _, rank) => sum + 1.0 / (RRF_K + rank), 0)
// Max similarity score for display (original 0-1 range)
const maxScore = chunks[0].score
rrfScores.set(docIdx, rrfScore)
maxScores.set(docIdx, maxScore)
}
return { rrfScores, maxScores }
}
// Initialize the FlexSearch Document instance with the appropriate configuration
const index = new FlexSearch.Document<Item>({
tokenize: "forward",
encode: encoder,
document: {
id: "id",
tag: "tags",
index: [
{
field: "title",
tokenize: "forward",
},
{
field: "content",
tokenize: "forward",
},
{
field: "tags",
tokenize: "forward",
},
],
},
})
const p = new DOMParser()
const fetchContentCache: Map<FullSlug, Element[]> = new Map()
const numSearchResults = 10
const numTagResults = 10
function highlightHTML(searchTerm: string, el: HTMLElement) {
const p = new DOMParser()
const tokenizedTerms = tokenizeTerm(searchTerm)
@@ -249,11 +143,7 @@ function highlightHTML(searchTerm: string, el: HTMLElement) {
return html.body
}
async function setupSearch(
searchElement: HTMLDivElement,
currentSlug: FullSlug,
data: ContentIndex,
) {
async function setupSearch(searchElement: Element, currentSlug: FullSlug, data: ContentIndex) {
const container = searchElement.querySelector(".search-container") as HTMLElement
if (!container) return
@@ -268,183 +158,12 @@ async function setupSearch(
const searchLayout = searchElement.querySelector(".search-layout") as HTMLElement
if (!searchLayout) return
const searchSpace = searchElement?.querySelector(".search-space") as HTMLFormElement
if (!searchSpace) return
// Create semantic search progress bar
const progressBar = document.createElement("div")
progressBar.className = "semantic-search-progress"
progressBar.style.cssText = `
position: absolute;
bottom: 0;
left: 0;
height: 2px;
width: 0;
background: var(--secondary);
transition: width 0.3s ease, opacity 0.3s ease;
opacity: 0;
z-index: 9999;
`
searchBar.parentElement?.appendChild(progressBar)
const startSemanticProgress = () => {
progressBar.style.opacity = "1"
progressBar.style.width = "0"
setTimeout(() => {
progressBar.style.width = "100%"
}, 10)
}
const completeSemanticProgress = () => {
progressBar.style.opacity = "0"
setTimeout(() => {
progressBar.style.width = "0"
}, 300)
}
const resetProgressBar = () => {
progressBar.style.opacity = "0"
progressBar.style.width = "0"
}
const idDataMap = Object.keys(data) as FullSlug[]
const slugToIndex = new Map<FullSlug, number>()
idDataMap.forEach((slug, idx) => slugToIndex.set(slug, idx))
const modeToggle = searchSpace.querySelector(".search-mode-toggle") as HTMLDivElement | null
const modeButtons = modeToggle
? Array.from(modeToggle.querySelectorAll<HTMLButtonElement>(".mode-option"))
: []
const appendLayout = (el: HTMLElement) => {
searchLayout.appendChild(el)
}
const enablePreview = searchLayout.dataset.preview === "true"
if (!semantic && !semanticInitFailed) {
const client = new SemanticClient(semanticCfg)
try {
await client.ensureReady()
semantic = client
semanticReady = true
// Load chunk metadata and IDs from manifest
try {
const manifestUrl = "/embeddings/manifest.json"
const res = await fetch(manifestUrl)
if (res.ok) {
const manifest = await res.json()
chunkMetadata = manifest.chunkMetadata || {}
manifestIds = manifest.ids || []
console.debug(
`[Search] Loaded manifest: ${manifestIds.length} chunks, ${Object.keys(chunkMetadata).length} chunked documents`,
)
}
} catch (err) {
console.warn("[Search] failed to load chunk metadata:", err)
chunkMetadata = {}
manifestIds = []
}
} catch (err) {
console.warn("[SemanticClient] initialization failed:", err)
client.dispose()
semantic = null
semanticReady = false
semanticInitFailed = true
}
} else if (semantic && !semanticReady) {
try {
await semantic.ensureReady()
semanticReady = true
} catch (err) {
console.warn("[SemanticClient] became unavailable:", err)
semantic.dispose()
semantic = null
semanticReady = false
semanticInitFailed = true
}
}
const storedMode = loadStoredSearchMode()
if (storedMode === "semantic") {
if (semanticReady) {
searchMode = storedMode
}
} else if (storedMode === "lexical") {
searchMode = storedMode
}
if (!semanticReady && searchMode === "semantic") {
searchMode = "lexical"
}
let searchSeq = 0
let runSearchTimer: number | null = null
let lastInputAt = 0
searchLayout.dataset.mode = searchMode
const updateModeUI = (mode: SearchMode) => {
modeButtons.forEach((button) => {
const btnMode = (button.dataset.mode as SearchMode) ?? "lexical"
const isActive = btnMode === mode
button.classList.toggle("active", isActive)
button.setAttribute("aria-pressed", String(isActive))
})
if (modeToggle) {
modeToggle.dataset.mode = mode
}
searchLayout.dataset.mode = mode
}
const computeDebounceDelay = (term: string): number => {
const trimmed = term.trim()
const lastTerm = currentSearchTerm
const isExtension =
lastTerm.length > 0 && trimmed.length > lastTerm.length && trimmed.startsWith(lastTerm)
const isRetraction = lastTerm.length > trimmed.length
const isReplacement =
lastTerm.length > 0 && !trimmed.startsWith(lastTerm) && !lastTerm.startsWith(trimmed)
const baseFullQueryDelay = 200
const semanticPenalty = searchMode === "semantic" ? 60 : 0
if (isExtension && trimmed.length > 2) {
return baseFullQueryDelay + semanticPenalty
}
if (isReplacement && trimmed.length > 3) {
return Math.max(90, baseFullQueryDelay - 80)
}
if (isRetraction) {
return 90
}
return baseFullQueryDelay + (searchMode === "semantic" ? 40 : 0)
}
const triggerSearchWithMode = (mode: SearchMode) => {
if (mode === "semantic" && !semanticReady) {
return
}
if (searchMode === mode) return
searchMode = mode
updateModeUI(mode)
persistSearchMode(searchMode)
if (rawSearchTerm.trim() !== "") {
searchLayout.classList.add("display-results")
const token = ++searchSeq
void runSearch(rawSearchTerm, token)
}
}
updateModeUI(searchMode)
modeButtons.forEach((button) => {
const btnMode = (button.dataset.mode as SearchMode) ?? "lexical"
if (btnMode === "semantic") {
button.disabled = !semanticReady
button.setAttribute("aria-disabled", String(!semanticReady))
}
const handler = () => triggerSearchWithMode(btnMode)
button.addEventListener("click", handler)
window.addCleanup(() => button.removeEventListener("click", handler))
})
let preview: HTMLDivElement | undefined = undefined
let previewInner: HTMLDivElement | undefined = undefined
const results = document.createElement("div")
@@ -466,23 +185,20 @@ async function setupSearch(
removeAllChildren(preview)
}
searchLayout.classList.remove("display-results")
searchType = "basic" // reset search type after closing
searchButton.focus()
resetProgressBar()
}
function showSearch(type: SearchType) {
function showSearch(searchTypeNew: SearchType) {
searchType = searchTypeNew
if (sidebar) sidebar.style.zIndex = "1"
container.classList.add("active")
if (type === "tags") {
searchBar.value = "#"
rawSearchTerm = "#"
}
searchBar.focus()
}
let currentHover: HTMLInputElement | null = null
async function shortcutHandler(e: HTMLElementEventMap["keydown"]) {
if ((e.key === "/" || e.key === "k") && (e.ctrlKey || e.metaKey) && !e.shiftKey) {
if (e.key === "k" && (e.ctrlKey || e.metaKey) && !e.shiftKey) {
e.preventDefault()
const searchBarOpen = container.classList.contains("active")
searchBarOpen ? hideSearch() : showSearch("basic")
@@ -492,6 +208,9 @@ async function setupSearch(
e.preventDefault()
const searchBarOpen = container.classList.contains("active")
searchBarOpen ? hideSearch() : showSearch("tags")
// add "#" prefix for tag search
searchBar.value = "#"
return
}
@@ -503,27 +222,18 @@ async function setupSearch(
if (!container.classList.contains("active")) return
if (e.key === "Enter") {
// If result has focus, navigate to that one, otherwise pick first result
let anchor: HTMLAnchorElement | undefined
if (results.contains(document.activeElement)) {
anchor = document.activeElement as HTMLAnchorElement
if (anchor.classList.contains("no-match")) return
await displayPreview(anchor)
e.preventDefault()
anchor.click()
const active = document.activeElement as HTMLInputElement
if (active.classList.contains("no-match")) return
await displayPreview(active)
active.click()
} else {
anchor = document.getElementsByClassName("result-card")[0] as HTMLAnchorElement
const anchor = document.getElementsByClassName("result-card")[0] as HTMLInputElement | null
if (!anchor || anchor.classList.contains("no-match")) return
await displayPreview(anchor)
e.preventDefault()
anchor.click()
}
if (anchor !== undefined)
window.spaNavigate(new URL(new URL(anchor.href).pathname, window.location.toString()))
} else if (
e.key === "ArrowUp" ||
(e.shiftKey && e.key === "Tab") ||
(e.ctrlKey && e.key === "p")
) {
} else if (e.key === "ArrowUp" || (e.shiftKey && e.key === "Tab")) {
e.preventDefault()
if (results.contains(document.activeElement)) {
// If an element in results-container already has focus, focus previous one
@@ -536,7 +246,7 @@ async function setupSearch(
if (prevResult) currentHover = prevResult
await displayPreview(prevResult)
}
} else if (e.key === "ArrowDown" || e.key === "Tab" || (e.ctrlKey && e.key === "n")) {
} else if (e.key === "ArrowDown" || e.key === "Tab") {
e.preventDefault()
// The results should already been focused, so we need to find the next one.
// The activeElement is the search bar, so we need to find the first result and focus it.
@@ -553,33 +263,25 @@ async function setupSearch(
}
}
const formatForDisplay = (term: string, id: number, renderType: SearchType) => {
const formatForDisplay = (term: string, id: number) => {
const slug = idDataMap[id]
// Check if query contains title words (for boosting exact matches)
const queryTokens = tokenizeTerm(term)
const titleTokens = tokenizeTerm(data[slug].title ?? "")
const titleMatch = titleTokens.some((t) => queryTokens.includes(t))
return {
id,
slug,
title: renderType === "tags" ? data[slug].title : highlight(term, data[slug].title ?? ""),
title: searchType === "tags" ? data[slug].title : highlight(term, data[slug].title ?? ""),
content: highlight(term, data[slug].content ?? "", true),
tags: highlightTags(term, data[slug].tags, renderType),
titleMatch, // Add title match flag for boosting
tags: highlightTags(term.substring(1), data[slug].tags),
}
}
function highlightTags(term: string, tags: string[], renderType: SearchType) {
if (!tags || renderType !== "tags") {
function highlightTags(term: string, tags: string[]) {
if (!tags || searchType !== "tags") {
return []
}
const tagTerm = term.toLowerCase()
return tags
.map((tag) => {
if (tag.toLowerCase().includes(tagTerm)) {
if (tag.toLowerCase().includes(term.toLowerCase())) {
return `<li><p class="match-tag">#${tag}</p></li>`
} else {
return `<li><p>#${tag}</p></li>`
@@ -592,40 +294,24 @@ async function setupSearch(
return new URL(resolveRelative(currentSlug, slug), location.toString())
}
const resultToHTML = ({ item, percent }: { item: Item; percent: number | null }) => {
const { slug, title, content, tags, target } = item
const resultToHTML = ({ slug, title, content, tags }: Item) => {
const htmlTags = tags.length > 0 ? `<ul class="tags">${tags.join("")}</ul>` : ``
const itemTile = document.createElement("a")
const titleContent = target ? highlight(currentSearchTerm, target) : title
const subscript = target ? `<b>${slug}</b>` : ``
let percentLabel = "—"
let percentAttr = ""
if (percent !== null && Number.isFinite(percent)) {
const bounded = Math.max(0, Math.min(100, percent))
percentLabel = `${bounded.toFixed(1)}%`
percentAttr = bounded.toFixed(3)
}
itemTile.classList.add("result-card")
itemTile.id = slug
itemTile.href = resolveUrl(slug).toString()
itemTile.innerHTML = `<hgroup>
<h3>${titleContent}</h3>
${subscript}${htmlTags}
${searchMode === "semantic" ? `<span class="result-likelihood" title="match likelihood">&nbsp;${percentLabel}</span>` : ""}
${enablePreview && window.innerWidth > 600 ? "" : `<p>${content}</p>`}
</hgroup>`
if (percentAttr) itemTile.dataset.scorePercent = percentAttr
else delete itemTile.dataset.scorePercent
itemTile.innerHTML = `
<h3 class="card-title">${title}</h3>
${htmlTags}
<p class="card-description">${content}</p>
`
itemTile.addEventListener("click", (event) => {
if (event.altKey || event.ctrlKey || event.metaKey || event.shiftKey) return
hideSearch()
})
const handler = (evt: MouseEvent) => {
if (evt.altKey || evt.ctrlKey || evt.metaKey || evt.shiftKey) return
const anchor = evt.currentTarget as HTMLAnchorElement | null
if (!anchor) return
evt.preventDefault()
const href = anchor.getAttribute("href")
if (!href) return
const url = new URL(href, window.location.toString())
window.spaNavigate(url)
const handler = (event: MouseEvent) => {
if (event.altKey || event.ctrlKey || event.metaKey || event.shiftKey) return
hideSearch()
}
@@ -643,22 +329,15 @@ async function setupSearch(
return itemTile
}
async function displayResults(finalResults: SimilarityResult[]) {
async function displayResults(finalResults: Item[]) {
removeAllChildren(results)
if (finalResults.length === 0) {
results.innerHTML = `<a class="result-card no-match">
<h3>No results.</h3>
<p>Try another search term?</p>
</a>`
currentHover = null
} else {
const decorated = finalResults.map(({ item, similarity }) => {
if (!Number.isFinite(similarity)) return { item, percent: null }
const bounded = Math.max(-1, Math.min(1, similarity))
const percent = ((bounded + 1) / 2) * 100
return { item, percent }
})
results.append(...decorated.map(resultToHTML))
results.append(...finalResults.map(resultToHTML))
}
if (finalResults.length === 0 && preview) {
@@ -678,8 +357,8 @@ async function setupSearch(
return fetchContentCache.get(slug) as Element[]
}
const targetUrl = resolveUrl(slug)
const contents = await fetchCanonical(targetUrl)
const targetUrl = resolveUrl(slug).toString()
const contents = await fetch(targetUrl)
.then((res) => res.text())
.then((contents) => {
if (contents === undefined) {
@@ -709,296 +388,73 @@ async function setupSearch(
const highlights = [...preview.getElementsByClassName("highlight")].sort(
(a, b) => b.innerHTML.length - a.innerHTML.length,
)
if (highlights.length > 0) {
const highlight = highlights[0]
const container = preview
if (container && highlight) {
// Get the relative positions
const containerRect = container.getBoundingClientRect()
const highlightRect = highlight.getBoundingClientRect()
// Calculate the scroll position relative to the container
const relativeTop = highlightRect.top - containerRect.top + container.scrollTop - 20 // 20px buffer
// Smoothly scroll the container
container.scrollTo({
top: relativeTop,
behavior: "smooth",
})
}
}
highlights[0]?.scrollIntoView({ block: "start" })
}
async function runSearch(rawTerm: string, token: number) {
async function onType(e: HTMLElementEventMap["input"]) {
if (!searchLayout || !index) return
const trimmed = rawTerm.trim()
if (trimmed === "") {
removeAllChildren(results)
if (preview) {
removeAllChildren(preview)
}
currentHover = null
searchLayout.classList.remove("display-results")
resetProgressBar()
return
}
currentSearchTerm = (e.target as HTMLInputElement).value
searchLayout.classList.toggle("display-results", currentSearchTerm !== "")
searchType = currentSearchTerm.startsWith("#") ? "tags" : "basic"
const modeForRanking: SearchMode = searchMode
const initialType: SearchType = trimmed.startsWith("#") ? "tags" : "basic"
let workingType: SearchType = initialType
let highlightTerm = trimmed
let tagTerm = ""
let searchResults: DefaultDocumentSearchResults<Item> = []
if (initialType === "tags") {
tagTerm = trimmed.substring(1).trim()
const separatorIndex = tagTerm.indexOf(" ")
if (separatorIndex !== -1) {
const tag = tagTerm.substring(0, separatorIndex).trim()
const query = tagTerm.substring(separatorIndex + 1).trim()
const results = await index.searchAsync({
query,
let searchResults: FlexSearch.SimpleDocumentSearchResultSetUnit[]
if (searchType === "tags") {
currentSearchTerm = currentSearchTerm.substring(1).trim()
const separatorIndex = currentSearchTerm.indexOf(" ")
if (separatorIndex != -1) {
// search by title and content index and then filter by tag (implemented in flexsearch)
const tag = currentSearchTerm.substring(0, separatorIndex)
const query = currentSearchTerm.substring(separatorIndex + 1).trim()
searchResults = await index.searchAsync({
query: query,
// return at least 10000 documents, so it is enough to filter them by tag (implemented in flexsearch)
limit: Math.max(numSearchResults, 10000),
index: ["title", "content"],
tag: { tags: tag },
tag: tag,
})
if (token !== searchSeq) return
searchResults = Object.values(results)
workingType = "basic"
highlightTerm = query
for (let searchResult of searchResults) {
searchResult.result = searchResult.result.slice(0, numSearchResults)
}
// set search type to basic and remove tag from term for proper highlightning and scroll
searchType = "basic"
currentSearchTerm = query
} else {
const results = await index.searchAsync({
query: tagTerm,
// default search by tags index
searchResults = await index.searchAsync({
query: currentSearchTerm,
limit: numSearchResults,
index: ["tags"],
})
if (token !== searchSeq) return
searchResults = Object.values(results)
highlightTerm = tagTerm
}
} else {
const results = await index.searchAsync({
query: highlightTerm,
} else if (searchType === "basic") {
searchResults = await index.searchAsync({
query: currentSearchTerm,
limit: numSearchResults,
index: ["title", "content"],
})
if (token !== searchSeq) return
searchResults = Object.values(results)
}
const coerceIds = (hit?: DefaultDocumentSearchResults<Item>[number]): number[] => {
if (!hit) return []
return hit.result
.map((value: Id) => {
if (typeof value === "number") {
return value
}
const parsed = Number.parseInt(String(value), 10)
return Number.isNaN(parsed) ? null : parsed
})
.filter((value): value is number => value !== null)
}
const getByField = (field: string): number[] => {
const hit = searchResults.find((x) => x.field === field)
return coerceIds(hit)
const results = searchResults.filter((x) => x.field === field)
return results.length === 0 ? [] : ([...results[0].result] as number[])
}
// order titles ahead of content
const allIds: Set<number> = new Set([
...getByField("title"),
...getByField("content"),
...getByField("tags"),
])
currentSearchTerm = highlightTerm
const candidateItems = new Map<string, Item>()
const ensureItem = (id: number): Item | null => {
const slug = idDataMap[id]
if (!slug) return null
const cached = candidateItems.get(slug)
if (cached) return cached
const item = formatForDisplay(highlightTerm, id, workingType)
if (item) {
candidateItems.set(slug, item)
return item
}
return null
}
const baseIndices: number[] = []
for (const id of allIds) {
const item = ensureItem(id)
if (!item) continue
const idx = slugToIndex.get(item.slug)
if (typeof idx === "number") {
baseIndices.push(idx)
}
}
let semanticIds: number[] = []
const semanticSimilarity = new Map<number, number>()
const integrateIds = (ids: number[]) => {
ids.forEach((docId) => {
ensureItem(docId)
})
}
const orchestrator = semanticReady && semantic ? semantic : null
const resolveSimilarity = (item: Item): number => {
const semanticHit = semanticSimilarity.get(item.id)
return semanticHit ?? Number.NaN
}
const render = async () => {
if (token !== searchSeq) return
const useSemantic = semanticReady && semanticIds.length > 0
const weights =
modeForRanking === "semantic" && useSemantic
? { base: 0.3, semantic: 1.0 }
: { base: 1.0, semantic: useSemantic ? 0.3 : 0 }
const rrf = new Map<string, number>()
const push = (ids: number[], weight: number, applyTitleBoost: boolean = false) => {
if (!ids.length || weight <= 0) return
ids.forEach((docId, rank) => {
const slug = idDataMap[docId]
if (!slug) return
const item = ensureItem(docId)
if (!item) return
// Apply title boost for FlexSearch results (1.5x boost for exact title matches)
let effectiveWeight = weight
if (applyTitleBoost && item.titleMatch) {
effectiveWeight *= 1.5
}
const prev = rrf.get(slug) ?? 0
rrf.set(slug, prev + effectiveWeight / (1 + rank))
})
}
push(baseIndices, weights.base, true) // FlexSearch with title boost
push(semanticIds, weights.semantic, false) // Semantic without boost
const rankedEntries = Array.from(candidateItems.values())
.map((item) => ({ item, score: rrf.get(item.slug) ?? 0 }))
.sort((a, b) => b.score - a.score)
.slice(0, numSearchResults)
const displayEntries: SimilarityResult[] = []
for (const entry of rankedEntries) {
const similarity = resolveSimilarity(entry.item)
displayEntries.push({ item: entry.item, similarity })
}
await displayResults(displayEntries)
}
await render()
if (workingType === "tags" || !orchestrator || !semanticReady || highlightTerm.length < 2) {
return
}
const showProgress = modeForRanking === "semantic"
if (showProgress) {
startSemanticProgress()
}
try {
const { semantic: semRes } = await orchestrator.search(
highlightTerm,
numSearchResults * 3, // Request more chunks to ensure good document coverage
)
if (token !== searchSeq) {
if (showProgress) completeSemanticProgress()
return
}
// Aggregate chunk results to document level using RRF
const { rrfScores: semRrfScores, maxScores: semMaxScores } = aggregateChunkResults(
semRes,
slugToIndex,
)
// Use RRF scores for ranking
semanticIds = Array.from(semRrfScores.entries())
.sort((a, b) => b[1] - a[1])
.slice(0, numSearchResults)
.map(([docIdx]) => docIdx)
// Use max chunk similarity for display (0-1 range)
semanticSimilarity.clear()
semMaxScores.forEach((score, docIdx) => {
semanticSimilarity.set(docIdx, score)
})
integrateIds(semanticIds)
if (showProgress) completeSemanticProgress()
} catch (err) {
console.warn("[SemanticClient] search failed:", err)
if (showProgress) completeSemanticProgress()
orchestrator.dispose()
semantic = null
semanticReady = false
semanticInitFailed = true
if (searchMode === "semantic") {
searchMode = "lexical"
updateModeUI(searchMode)
}
modeButtons.forEach((button) => {
if ((button.dataset.mode as SearchMode) === "semantic") {
button.disabled = true
button.setAttribute("aria-disabled", "true")
}
})
}
await render()
}
function onType(e: HTMLElementEventMap["input"]) {
if (!searchLayout || !index) return
rawSearchTerm = (e.target as HTMLInputElement).value
const hasQuery = rawSearchTerm.trim() !== ""
searchLayout.classList.toggle("display-results", hasQuery)
const term = rawSearchTerm
const token = ++searchSeq
if (runSearchTimer !== null) {
window.clearTimeout(runSearchTimer)
runSearchTimer = null
}
if (!hasQuery) {
void runSearch("", token)
return
}
const now = performance.now()
lastInputAt = now
const delay = computeDebounceDelay(term)
const scheduledAt = lastInputAt
runSearchTimer = window.setTimeout(() => {
if (scheduledAt !== lastInputAt) {
return
}
runSearchTimer = null
void runSearch(term, token)
}, delay)
const finalResults = [...allIds].map((id) => formatForDisplay(currentSearchTerm, id))
await displayResults(finalResults)
}
document.addEventListener("keydown", shortcutHandler)
window.addCleanup(() => document.removeEventListener("keydown", shortcutHandler))
const openHandler = () => showSearch("basic")
searchButton.addEventListener("click", openHandler)
window.addCleanup(() => searchButton.removeEventListener("click", openHandler))
searchButton.addEventListener("click", () => showSearch("basic"))
window.addCleanup(() => searchButton.removeEventListener("click", () => showSearch("basic")))
searchBar.addEventListener("input", onType)
window.addCleanup(() => searchBar.removeEventListener("input", onType))
window.addCleanup(() => {
if (runSearchTimer !== null) {
window.clearTimeout(runSearchTimer)
runSearchTimer = null
}
resetProgressBar()
})
registerEscapeHandler(container, hideSearch)
await fillDocument(data)
@@ -1006,17 +462,17 @@ async function setupSearch(
/**
* Fills flexsearch document with data
* @param index index to fill
* @param data data to fill index with
*/
let indexPopulated = false
async function fillDocument(data: ContentIndex) {
if (indexPopulated) return
let id = 0
const promises = []
const promises: Array<Promise<unknown>> = []
for (const [slug, fileData] of Object.entries<ContentDetails>(data)) {
promises.push(
//@ts-ignore
index.addAsync({
index.addAsync(id++, {
id,
slug: slug as FullSlug,
title: fileData.title,
@@ -1024,7 +480,6 @@ async function fillDocument(data: ContentIndex) {
tags: fileData.tags,
}),
)
id++
}
await Promise.all(promises)
@@ -1034,9 +489,7 @@ async function fillDocument(data: ContentIndex) {
document.addEventListener("nav", async (e: CustomEventMap["nav"]) => {
const currentSlug = e.detail.url
const data = await fetchData
const searchElement = document.getElementsByClassName(
"search",
) as HTMLCollectionOf<HTMLDivElement>
const searchElement = document.getElementsByClassName("search")
for (const element of searchElement) {
await setupSearch(element, currentSlug, data)
}

View File

@@ -1,182 +0,0 @@
export type SemanticResult = { id: number; score: number }
type ProgressMessage = {
type: "progress"
loadedRows: number
totalRows: number
}
type ReadyMessage = { type: "ready" }
type ResultMessage = {
type: "search-result"
seq: number
semantic: SemanticResult[]
}
type ErrorMessage = { type: "error"; seq?: number; message: string }
type SearchPayload = {
semantic: SemanticResult[]
}
type PendingResolver = {
resolve: (payload: SearchPayload) => void
reject: (err: Error) => void
}
export class SemanticClient {
private ready: Promise<void>
private resolveReady!: () => void
private worker: Worker | null = null
private pending = new Map<number, PendingResolver>()
private seq = 0
private disposed = false
private readySettled = false
private configured = false
private lastError: Error | null = null
constructor(private cfg?: any) {
this.ready = new Promise((resolve) => {
this.resolveReady = () => {
if (this.readySettled) return
this.readySettled = true
resolve()
}
})
if (this.cfg?.enable === false) {
this.lastError = new Error("semantic search disabled by configuration")
this.resolveReady()
return
}
this.boot()
}
private boot() {
try {
this.worker = new Worker("/semantic.worker.js", { type: "module" })
} catch (err) {
this.handleFatal(err)
return
}
this.setupWorker()
this.startInit()
}
private setupWorker() {
if (!this.worker) return
this.worker.onmessage = (
event: MessageEvent<ProgressMessage | ReadyMessage | ResultMessage | ErrorMessage>,
) => {
const msg = event.data
if (msg.type === "progress") {
// Progress updates during initialization - can be logged if needed
return
}
if (msg.type === "ready") {
this.configured = true
this.lastError = null
this.resolveReady()
return
}
if (msg.type === "search-result") {
const pending = this.pending.get(msg.seq)
if (pending) {
this.pending.delete(msg.seq)
pending.resolve({ semantic: msg.semantic ?? [] })
}
return
}
if (msg.type === "error") {
if (typeof msg.seq === "number") {
const pending = this.pending.get(msg.seq)
if (pending) {
this.pending.delete(msg.seq)
pending.reject(new Error(msg.message))
}
} else {
this.handleFatal(msg.message)
}
}
}
}
private startInit() {
if (!this.worker) return
const manifestUrl =
typeof this.cfg?.manifestUrl === "string" && this.cfg.manifestUrl.length > 0
? this.cfg.manifestUrl
: "/embeddings/manifest.json"
const disableCache = Boolean(this.cfg?.disableCache)
const baseUrl =
typeof this.cfg?.manifestBaseUrl === "string" ? this.cfg.manifestBaseUrl : undefined
this.worker.postMessage({
type: "init",
cfg: this.cfg,
manifestUrl,
baseUrl,
disableCache,
})
}
private rejectAll(err: Error, fatal = false) {
for (const [id, pending] of this.pending.entries()) {
pending.reject(err)
this.pending.delete(id)
}
if (fatal) {
this.lastError = err
this.configured = false
if (!this.readySettled) {
this.resolveReady()
}
}
}
private handleFatal(err: unknown) {
const error = err instanceof Error ? err : new Error(String(err))
console.error("[SemanticClient] initialization failure:", error)
this.rejectAll(error, true)
if (this.worker) {
this.worker.postMessage({ type: "reset" })
this.worker.terminate()
this.worker = null
}
}
async ensureReady() {
await this.ready
if (!this.configured) {
throw this.lastError ?? new Error("semantic search unavailable")
}
}
async search(text: string, k: number): Promise<SearchPayload> {
if (this.disposed) {
throw new Error("semantic client has been disposed")
}
await this.ensureReady()
if (!this.worker || !this.configured) {
throw this.lastError ?? new Error("worker unavailable")
}
return new Promise<SearchPayload>((resolve, reject) => {
const seq = ++this.seq
this.pending.set(seq, { resolve, reject })
this.worker?.postMessage({ type: "search", text, k, seq })
})
}
dispose() {
if (this.disposed) return
this.disposed = true
this.rejectAll(new Error("semantic client disposed"))
if (this.worker) {
this.worker.postMessage({ type: "reset" })
this.worker.terminate()
}
this.worker = null
this.configured = false
}
}

View File

@@ -8,23 +8,24 @@
}
& > .search-button {
background-color: transparent;
border: 1px var(--lightgray) solid;
background-color: color-mix(in srgb, var(--lightgray) 60%, var(--light));
border: none;
border-radius: 4px;
font-family: inherit;
font-size: inherit;
height: 2rem;
padding: 0 1rem 0 0;
padding: 0;
display: flex;
align-items: center;
text-align: inherit;
cursor: pointer;
white-space: nowrap;
width: 100%;
justify-content: space-between;
& > p {
display: inline;
color: var(--gray);
padding: 0 1rem;
}
& svg {
@@ -35,7 +36,7 @@
.search-path {
stroke: var(--darkgray);
stroke-width: 1.5px;
stroke-width: 2px;
transition: stroke 0.5s ease;
}
}
@@ -77,97 +78,16 @@
margin-bottom: 2em;
}
& > .input-container {
align-items: center;
gap: 0.5rem;
display: flex;
flex-wrap: wrap;
position: relative;
& > input {
box-sizing: border-box;
padding: 0.5em 1em;
font-family: var(--bodyFont);
color: var(--dark);
font-size: 1.1em;
border: 1px solid var(--lightgray);
.search-bar {
flex: 1 1 auto;
min-width: 0;
box-sizing: border-box;
padding: 0.5em 1em;
font-family: var(--bodyFont);
color: var(--dark);
font-size: 1.1em;
border: none;
background: transparent;
&:focus {
outline: none;
}
}
.semantic-search-progress {
position: absolute;
bottom: 0;
left: 0;
right: 0;
height: 2px;
background-color: var(--secondary);
width: 0;
opacity: 0;
transition:
width 0.3s ease,
opacity 0.2s ease;
pointer-events: none;
}
.search-mode-toggle {
display: inline-flex;
align-items: center;
border-radius: 9999px;
height: 1.4rem;
background-color: color-mix(in srgb, var(--darkgray) 12%, transparent);
margin-right: 1rem;
.mode-option {
border: none;
background: transparent;
font: inherit;
color: var(--gray);
border-radius: 9999px;
cursor: pointer;
transition:
background-color 0.2s ease,
color 0.2s ease;
display: inline-flex;
align-items: center;
justify-content: center;
width: 1.5rem;
height: 1.5rem;
position: relative;
&:focus-visible {
outline: 2px solid var(--tertiary);
outline-offset: 2px;
}
&.active {
background-color: var(--secondary);
color: var(--light);
}
svg {
width: 18px;
height: 18px;
}
.sr-only {
position: absolute;
width: 1px;
height: 1px;
padding: 0;
margin: -1px;
overflow: hidden;
clip: rect(0, 0, 0, 0);
white-space: nowrap;
border: 0;
}
}
&:focus {
outline: none;
}
}

View File

@@ -1,542 +0,0 @@
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "langchain-text-splitters",
# "numpy",
# "openai",
# "sentence-transformers",
# "tiktoken",
# ]
# ///
from __future__ import annotations
import os, json, argparse, hashlib, math, random, logging
from pathlib import Path
from functools import lru_cache
from collections.abc import Iterable
from concurrent.futures import ThreadPoolExecutor, as_completed
import tiktoken, numpy as np
from openai import OpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
logger = logging.getLogger(__name__)
DEFAULT_VLLM_URL = os.environ.get("VLLM_URL") or os.environ.get("VLLM_EMBED_URL") or "http://127.0.0.1:8000/v1"
def resolve_vllm_base_url(url: str) -> str:
if not url:
raise ValueError("vLLM URL must be non-empty")
trimmed = url.rstrip("/")
if trimmed.endswith("/v1/embeddings"):
trimmed = trimmed[: -len("/embeddings")]
elif trimmed.endswith("/embeddings"):
trimmed = trimmed[: trimmed.rfind("/")]
if not trimmed.endswith("/v1"):
trimmed = f"{trimmed}/v1"
return trimmed
def load_jsonl(fp: str) -> Iterable[dict]:
with open(fp, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
yield json.loads(line)
def l2_normalize_rows(x: np.ndarray) -> np.ndarray:
# x: [N, D]
norms = np.linalg.norm(x, ord=2, axis=1, keepdims=True)
norms[norms == 0] = 1.0
return x / norms
@lru_cache(maxsize=1)
def get_tiktoken_encoder():
# Get the o200k_base tokenizer (GPT-4o) with caching
# change this if you want something else.
return tiktoken.get_encoding("o200k_base")
def count_tokens(text: str) -> int:
# Count tokens using o200k_base encoding
encoder = get_tiktoken_encoder()
return len(encoder.encode(text))
def get_text_splitter(chunk_size: int, overlap: int):
encoder = get_tiktoken_encoder()
return RecursiveCharacterTextSplitter(
chunk_size=chunk_size * 4, # character approximation
chunk_overlap=overlap * 4,
separators=["\n\n", "\n", ". ", " ", ""],
length_function=lambda t: len(encoder.encode(t)),
is_separator_regex=False,
)
def chunk_document(
doc: dict, max_tokens: int = 512, overlap_tokens: int = 128, min_chunk_size: int = 100
) -> list[dict]:
"""
Chunk a document if it exceeds max_tokens
Args:
doc: {'slug': str, 'title': str, 'text': str}
max_tokens: Maximum tokens per chunk
overlap_tokens: Overlap between chunks
min_chunk_size: Minimum chunk size (avoid tiny chunks)
Returns:
List of chunk dicts with metadata
"""
text = doc["text"]
token_count = count_tokens(text)
# No chunking needed
if token_count <= max_tokens:
return [
{
"slug": doc["slug"],
"title": doc.get("title", doc["slug"]),
"text": text,
"chunk_id": 0,
"parent_slug": doc["slug"],
"is_chunked": False,
}
]
# Apply chunking
splitter = get_text_splitter(max_tokens, overlap_tokens)
raw_chunks = splitter.split_text(text)
# Filter out tiny chunks
valid_chunks = [c for c in raw_chunks if count_tokens(c) >= min_chunk_size]
return [
{
"slug": f"{doc['slug']}#chunk{i}",
"title": doc.get("title", doc["slug"]),
"text": chunk,
"chunk_id": i,
"parent_slug": doc["slug"],
"is_chunked": True,
}
for i, chunk in enumerate(valid_chunks)
]
def write_shards(vectors: np.ndarray, shard_size: int, dtype: str, out_dir: Path) -> list[dict]:
out_dir.mkdir(parents=True, exist_ok=True)
rows, dims = vectors.shape
shards_meta: list[dict] = []
np_dtype = np.float16 if dtype == "fp16" else np.float32
bytes_per_value = np.dtype(np_dtype).itemsize
row_offset = 0
for si, start in enumerate(range(0, rows, shard_size)):
end = min(start + shard_size, rows)
shard = vectors[start:end] # [n, dims]
bin_path = out_dir / f"vectors-{si:03d}.bin"
payload = shard.astype(np_dtype, copy=False).tobytes(order="C")
digest = hashlib.sha256(payload).hexdigest()
with open(bin_path, "wb") as f:
f.write(payload)
shard_rows = int(shard.shape[0])
shards_meta.append(
{
"path": f"/embeddings/{bin_path.name}",
"rows": shard_rows,
"rowOffset": row_offset,
"byteLength": len(payload),
"sha256": digest,
"byteStride": dims * bytes_per_value,
},
)
row_offset += shard_rows
return shards_meta
def write_hnsw_graph(levels: list[list[list[int]]], rows: int, out_path: Path) -> tuple[list[dict], str]:
out_path.parent.mkdir(parents=True, exist_ok=True)
offset = 0
meta: list[dict] = []
digest = hashlib.sha256()
with open(out_path, "wb") as f:
for lvl in levels:
indptr = np.zeros(rows + 1, dtype=np.uint32)
edge_accum: list[int] = []
for idx in range(rows):
neighbors = lvl[idx] if idx < len(lvl) else []
indptr[idx + 1] = indptr[idx] + len(neighbors)
edge_accum.extend(neighbors)
indptr_bytes = indptr.tobytes(order="C")
indptr_offset = offset
f.write(indptr_bytes)
digest.update(indptr_bytes)
offset += len(indptr_bytes)
if edge_accum:
indices = np.asarray(edge_accum, dtype=np.uint32)
indices_bytes = indices.tobytes(order="C")
else:
indices = np.zeros(0, dtype=np.uint32)
indices_bytes = indices.tobytes(order="C")
indices_offset = offset
f.write(indices_bytes)
digest.update(indices_bytes)
offset += len(indices_bytes)
meta.append(
{
"level": len(meta),
"indptr": {
"offset": indptr_offset,
"elements": int(indptr.shape[0]),
"byteLength": len(indptr_bytes),
},
"indices": {
"offset": indices_offset,
"elements": int(indices.shape[0]),
"byteLength": len(indices_bytes),
},
},
)
return meta, digest.hexdigest()
def embed_vllm(
texts: list[str],
model_id: str,
vllm_url: str,
batch_size: int = 64,
concurrency: int = 8,
) -> np.ndarray:
base_url = resolve_vllm_base_url(vllm_url)
api_key = os.environ.get("VLLM_API_KEY") or os.environ.get("OPENAI_API_KEY") or "not-set"
client = OpenAI(base_url=base_url, api_key=api_key, timeout=300)
def list_available_models() -> list[str]:
models: list[str] = []
page = client.models.list()
models.extend(model.id for model in page.data)
while getattr(page, "has_more", False) and page.data:
cursor = page.data[-1].id
page = client.models.list(after=cursor)
models.extend(model.id for model in page.data)
return models
try:
available_models = list_available_models()
except Exception as exc:
raise RuntimeError(f"failed to query {base_url}/models: {exc}") from exc
if model_id not in available_models:
suggestions = ", ".join(sorted(available_models)) if available_models else "<none>"
logger.warning(
"model '%s' not served by vLLM at %s. Available models: %s. Use the first model, results may differ during semantic search (you can omit this message if your weights is a ONNX checkpoint of the same model.)", model_id, base_url, suggestions,
)
model_id = available_models[0]
# Apply model-specific prefixes for documents (asymmetric search)
model_lower = model_id.lower()
if "e5" in model_lower:
# E5 models: use "passage:" prefix for documents
prefixed = [f"passage: {t}" for t in texts]
elif "qwen" in model_lower and "embedding" in model_lower:
# Qwen3-Embedding: documents use plain text (no prefix)
prefixed = texts
elif "embeddinggemma" in model_lower:
# embeddinggemma: use "title: none | text:" prefix for documents
prefixed = [f"title: none | text: {t}" for t in texts]
else:
# Default: no prefix for unknown models
prefixed = texts
print(
"Embedding"
f" {len(prefixed)} texts with vLLM"
f" (model={model_id}, batch_size={batch_size}, concurrency={concurrency})",
)
# Create batches
batches = []
for i in range(0, len(prefixed), batch_size):
batch = prefixed[i : i + batch_size]
batches.append((i, batch))
# Function to send a single batch request
def send_batch(batch_info: tuple[int, list[str]]) -> tuple[int, list[np.ndarray]]:
idx, batch = batch_info
response = client.embeddings.create(model=model_id, input=batch)
embeddings = [np.asarray(item.embedding, dtype=np.float32) for item in response.data]
return (idx, embeddings)
# Send batches concurrently (or sequentially if only 1 batch)
results: dict[int, list[np.ndarray]] = {}
if len(batches) == 1:
# Single batch - no need for threading
idx, embeddings = send_batch(batches[0])
results[idx] = embeddings
else:
# Multiple batches - use concurrent requests
with ThreadPoolExecutor(max_workers=concurrency) as executor:
futures = {executor.submit(send_batch, batch_info): batch_info[0] for batch_info in batches}
completed = 0
for future in as_completed(futures):
idx, embeddings = future.result()
results[idx] = embeddings
completed += 1
if completed % max(1, len(batches) // 10) == 0 or completed == len(batches):
print(f" Completed {completed}/{len(batches)} batches ({completed * 100 // len(batches)}%)")
# Reconstruct in order
out: list[np.ndarray] = []
for i in sorted(results.keys()):
out.extend(results[i])
return np.stack(out, axis=0)
def embed_hf(texts: list[str], model_id: str, device: str) -> np.ndarray:
# Prefer sentence-transformers for E5 and similar embed models
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(model_id, device=device)
# Apply model-specific prefixes for documents (asymmetric search)
model_lower = model_id.lower()
if "e5" in model_lower:
# E5 models: use "passage:" prefix for documents
prefixed = [f"passage: {t}" for t in texts]
elif "qwen" in model_lower and "embedding" in model_lower:
# Qwen3-Embedding: documents use plain text (no prefix)
prefixed = texts
elif "embeddinggemma" in model_lower:
# embeddinggemma: use "title: none | text:" prefix for documents
prefixed = [f"title: none | text: {t}" for t in texts]
else:
# Default: no prefix for unknown models
prefixed = texts
vecs = model.encode(
prefixed,
batch_size=64,
normalize_embeddings=True,
convert_to_numpy=True,
show_progress_bar=True,
)
return vecs.astype(np.float32, copy=False)
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--jsonl", default="public/embeddings-text.jsonl")
ap.add_argument("--model", default=os.environ.get("SEM_MODEL", "intfloat/multilingual-e5-large"))
ap.add_argument("--dims", type=int, default=int(os.environ.get("SEM_DIMS", "1024")))
ap.add_argument("--dtype", choices=["fp16", "fp32"], default=os.environ.get("SEM_DTYPE", "fp32"))
ap.add_argument("--shard-size", type=int, default=int(os.environ.get("SEM_SHARD", "1024")))
ap.add_argument("--out", default="public/embeddings")
ap.add_argument("--use-vllm", action="store_true", default=bool(os.environ.get("USE_VLLM", "")))
ap.add_argument(
"--vllm-url",
default=DEFAULT_VLLM_URL,
help="Base URL for the vLLM OpenAI-compatible server (accepts either /v1 or /v1/embeddings)",
)
ap.add_argument("--chunk-size", type=int, default=512, help="Max tokens per chunk")
ap.add_argument("--chunk-overlap", type=int, default=128, help="Overlap tokens between chunks")
ap.add_argument("--no-chunking", action="store_true", help="Disable chunking (embed full docs)")
ap.add_argument(
"--concurrency",
type=int,
default=int(os.environ.get("VLLM_CONCURRENCY", "8")),
help="Number of concurrent requests to vLLM (default: 8)",
)
ap.add_argument(
"--batch-size",
type=int,
default=int(os.environ.get("VLLM_BATCH_SIZE", "64")),
help="Batch size for vLLM requests (default: 64)",
)
args = ap.parse_args()
recs = list(load_jsonl(args.jsonl))
if not recs:
print("No input found in public/embeddings-text.jsonl; run the site build first to emit JSONL.")
return
# Apply chunking
if args.no_chunking:
chunks = recs
chunk_metadata = {}
print(f"Chunking disabled. Processing {len(chunks)} full documents")
else:
chunks = []
chunk_metadata = {}
for rec in recs:
doc_chunks = chunk_document(rec, max_tokens=args.chunk_size, overlap_tokens=args.chunk_overlap)
chunks.extend(doc_chunks)
# Build chunk metadata map
for chunk in doc_chunks:
if chunk["is_chunked"]:
chunk_metadata[chunk["slug"]] = {
"parentSlug": chunk["parent_slug"],
"chunkId": chunk["chunk_id"],
}
chunked_count = sum(1 for c in chunks if c.get("is_chunked", False))
print(f"Chunked {len(recs)} documents into {len(chunks)} chunks ({chunked_count} chunked, {len(chunks) - chunked_count} unchanged)")
print(f" Chunk size: {args.chunk_size} tokens, overlap: {args.chunk_overlap} tokens")
ids = [c["slug"] for c in chunks]
titles = [c.get("title", c["slug"]) for c in chunks]
texts = [c["text"] for c in chunks]
if args.use_vllm:
vecs = embed_vllm(
texts,
args.model,
args.vllm_url,
batch_size=args.batch_size,
concurrency=args.concurrency,
)
else:
device = "cuda" if os.environ.get("CUDA_VISIBLE_DEVICES") else "cpu"
vecs = embed_hf(texts, args.model, device)
# Coerce dims and re-normalize
if vecs.shape[1] != args.dims:
if vecs.shape[1] > args.dims:
vecs = vecs[:, : args.dims]
else:
vecs = np.pad(vecs, ((0, 0), (0, args.dims - vecs.shape[1])))
vecs = l2_normalize_rows(vecs.astype(np.float32, copy=False))
out_dir = Path(args.out)
shards = write_shards(vecs, args.shard_size, args.dtype, out_dir)
# Build a lightweight HNSW graph and store it in a compact binary layout
def hnsw_build(data: np.ndarray, M: int = 16, efC: int = 200, seed: int = 0) -> dict:
rng = random.Random(seed)
N, D = data.shape
levels: list[list[list[int]]] = [] # levels[L][i] = neighbors of node i at level L
# random level assignment using 1/e distribution
node_levels = []
for _ in range(N):
lvl = 0
while rng.random() < 1 / math.e:
lvl += 1
node_levels.append(lvl)
max_level = max(node_levels) if N > 0 else 0
for _ in range(max_level + 1):
levels.append([[] for _ in range(N)])
def sim(i: int, j: int) -> float:
return float((data[i] * data[j]).sum())
entry = 0 if N > 0 else -1
def search_layer(q: int, ep: int, ef: int, L: int) -> list[int]:
if ep < 0:
return []
visited = set()
cand: list[tuple[float, int]] = []
top: list[tuple[float, int]] = []
def push(node: int):
if node in visited:
return
visited.add(node)
cand.append((sim(q, node), node))
push(ep)
while cand:
cand.sort(reverse=True)
s, v = cand.pop(0)
if len(top) >= ef and s <= top[-1][0]:
break
top.append((s, v))
for u in levels[L][v]:
push(u)
top.sort(reverse=True)
return [n for _, n in top]
for i in range(N):
if i == 0:
continue
lvl = node_levels[i]
ep = entry
for L in range(max_level, lvl, -1):
c = search_layer(i, ep, 1, L)
if c:
ep = c[0]
for L in range(min(max_level, lvl), -1, -1):
W = search_layer(i, ep, efC, L)
# Select top M by similarity
neigh = sorted(((sim(i, j), j) for j in W if j != i), reverse=True)[:M]
for _, e in neigh:
if e not in levels[L][i]:
levels[L][i].append(e)
if i not in levels[L][e]:
levels[L][e].append(i)
# trim neighbors to M
for L in range(len(levels)):
for i in range(N):
if len(levels[L][i]) > M:
# keep top M by sim
nb = levels[L][i]
nb = sorted(nb, key=lambda j: sim(i, j), reverse=True)[:M]
levels[L][i] = nb
return {
"M": M,
"efConstruction": efC,
"entryPoint": entry,
"maxLevel": max_level,
"levels": levels,
}
hnsw = hnsw_build(vecs, M=16, efC=200)
hnsw_meta, hnsw_sha = write_hnsw_graph(hnsw["levels"], int(vecs.shape[0]), out_dir / "hnsw.bin")
manifest = {
"version": 2,
"dims": args.dims,
"dtype": args.dtype,
"normalized": True,
"rows": int(vecs.shape[0]),
"shardSizeRows": args.shard_size,
"vectors": {
"dtype": args.dtype,
"rows": int(vecs.shape[0]),
"dims": args.dims,
"shards": shards,
},
"ids": ids,
"titles": titles,
"chunkMetadata": chunk_metadata,
"hnsw": {
"M": hnsw["M"],
"efConstruction": hnsw["efConstruction"],
"entryPoint": hnsw["entryPoint"],
"maxLevel": hnsw["maxLevel"],
"graph": {
"path": "/embeddings/hnsw.bin",
"sha256": hnsw_sha,
"levels": hnsw_meta,
},
},
}
(out_dir / "manifest.json").write_text(json.dumps(manifest, ensure_ascii=False), encoding="utf-8")
print(f"Wrote {len(shards)} vector shard(s), HNSW graph, and manifest to {out_dir}")
if __name__ == "__main__":
main()

View File

@@ -5,7 +5,6 @@ export default {
title: "غير معنون",
description: "لم يتم تقديم أي وصف",
},
direction: "rtl" as const,
components: {
callout: {
note: "ملاحظة",

View File

@@ -15,7 +15,7 @@ export default {
success: "Erfolg",
question: "Frage",
warning: "Warnung",
failure: "Fehlgeschlagen",
failure: "Misserfolg",
danger: "Gefahr",
bug: "Fehler",
example: "Beispiel",
@@ -57,7 +57,7 @@ export default {
title: "Inhaltsverzeichnis",
},
contentMeta: {
readingTime: ({ minutes }) => `${minutes} Min. Lesezeit`,
readingTime: ({ minutes }) => `${minutes} min read`,
},
},
pages: {
@@ -68,7 +68,7 @@ export default {
error: {
title: "Nicht gefunden",
notFound: "Diese Seite ist entweder nicht öffentlich oder existiert nicht.",
home: "Zur Startseite",
home: "Return to Homepage",
},
folderContent: {
folder: "Ordner",

View File

@@ -21,7 +21,6 @@ export interface Translation {
title: string
description: string
}
direction?: "ltr" | "rtl"
components: {
callout: CalloutTranslation
backlinks: {

View File

@@ -5,7 +5,6 @@ export default {
title: "بدون عنوان",
description: "توضیح خاصی اضافه نشده است",
},
direction: "rtl" as const,
components: {
callout: {
note: "یادداشت",

View File

@@ -51,7 +51,7 @@ export default {
},
search: {
title: "Szukaj",
searchBarPlaceholder: "Wpisz frazę wyszukiwania",
searchBarPlaceholder: "Search for something",
},
tableOfContents: {
title: "Spis treści",

View File

@@ -40,7 +40,7 @@ export const NotFoundPage: QuartzEmitterPlugin = () => {
description: notFound,
frontmatter: { title: notFound, tags: [] },
})
const externalResources = pageResources(path, resources, ctx.cfg.configuration)
const externalResources = pageResources(path, resources)
const componentData: QuartzComponentProps = {
ctx,
fileData: vfile.data,

View File

@@ -1,7 +1,7 @@
import { FilePath, joinSegments } from "../../util/path"
import { QuartzEmitterPlugin } from "../types"
import { write } from "./helpers"
import fs from "fs"
import { styleText } from "util"
import { FullSlug } from "../../util/path"
export function extractDomainFromBaseUrl(baseUrl: string) {
const url = new URL(`https://${baseUrl}`)
@@ -10,25 +10,20 @@ export function extractDomainFromBaseUrl(baseUrl: string) {
export const CNAME: QuartzEmitterPlugin = () => ({
name: "CNAME",
async emit(ctx) {
if (!ctx.cfg.configuration.baseUrl) {
async emit({ argv, cfg }) {
if (!cfg.configuration.baseUrl) {
console.warn(
styleText("yellow", "CNAME emitter requires `baseUrl` to be set in your configuration"),
)
return []
}
const content = extractDomainFromBaseUrl(ctx.cfg.configuration.baseUrl)
const path = joinSegments(argv.output, "CNAME")
const content = extractDomainFromBaseUrl(cfg.configuration.baseUrl)
if (!content) {
return []
}
const path = await write({
ctx,
content,
slug: "CNAME" as FullSlug,
ext: "",
})
return [path]
await fs.promises.writeFile(path, content)
return [path] as FilePath[]
},
async *partialEmit() {},
})

View File

@@ -1,8 +1,5 @@
import { FullSlug, joinSegments } from "../../util/path"
import { QuartzEmitterPlugin } from "../types"
import path from "path"
import fs from "node:fs/promises"
import { globby } from "globby"
// @ts-ignore
import spaRouterScript from "../../components/scripts/spa.inline"
@@ -19,7 +16,7 @@ import {
processGoogleFonts,
} from "../../util/theme"
import { Features, transform } from "lightningcss"
import { transform as transpile, build as bundle } from "esbuild"
import { transform as transpile } from "esbuild"
import { write } from "./helpers"
type ComponentResources = {
@@ -204,46 +201,6 @@ function addGlobalPageResources(ctx: BuildCtx, componentResources: ComponentReso
})(window, document, "clarity", "script", "${cfg.analytics.projectId}");\`
document.head.appendChild(clarityScript)
`)
} else if (cfg.analytics?.provider === "matomo") {
componentResources.afterDOMLoaded.push(`
const matomoScript = document.createElement("script");
matomoScript.innerHTML = \`
let _paq = window._paq = window._paq || [];
// Track SPA navigation
// https://developer.matomo.org/guides/spa-tracking
document.addEventListener("nav", () => {
_paq.push(['setCustomUrl', location.pathname]);
_paq.push(['setDocumentTitle', document.title]);
_paq.push(['trackPageView']);
});
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
const u="//${cfg.analytics.host}/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', ${cfg.analytics.siteId}]);
const d=document, g=d.createElement('script'), s=d.getElementsByTagName
('script')[0];
g.type='text/javascript'; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
\`
document.head.appendChild(matomoScript);
`)
} else if (cfg.analytics?.provider === "vercel") {
/**
* script from {@link https://vercel.com/docs/analytics/quickstart?framework=html#add-the-script-tag-to-your-site|Vercel Docs}
*/
componentResources.beforeDOMLoaded.push(`
window.va = window.va || function () { (window.vaq = window.vaq || []).push(arguments); };
`)
componentResources.afterDOMLoaded.push(`
const vercelInsightsScript = document.createElement("script")
vercelInsightsScript.src = "/_vercel/insights/script.js"
vercelInsightsScript.defer = true
document.head.appendChild(vercelInsightsScript)
`)
}
if (cfg.enableSPA) {
@@ -360,47 +317,7 @@ export const ComponentResources: QuartzEmitterPlugin = () => {
ext: ".js",
content: postscript,
})
// Bundle all worker files
const workerFiles = await globby(["quartz/**/*.worker.ts"])
for (const src of workerFiles) {
const result = await bundle({
entryPoints: [src],
bundle: true,
minify: true,
platform: "browser",
format: "esm",
write: false,
})
const code = result.outputFiles[0].text
const name = path.basename(src).replace(/\.ts$/, "")
yield write({ ctx, slug: name as FullSlug, ext: ".js", content: code })
}
},
async *partialEmit(ctx, _content, _resources, changeEvents) {
// Handle worker file changes in incremental builds
for (const changeEvent of changeEvents) {
if (!/\.worker\.ts$/.test(changeEvent.path)) continue
if (changeEvent.type === "delete") {
const name = path.basename(changeEvent.path).replace(/\.ts$/, "")
const dest = joinSegments(ctx.argv.output, `${name}.js`)
try {
await fs.unlink(dest)
} catch {}
continue
}
const result = await bundle({
entryPoints: [changeEvent.path],
bundle: true,
minify: true,
platform: "browser",
format: "esm",
write: false,
})
const code = result.outputFiles[0].text
const name = path.basename(changeEvent.path).replace(/\.ts$/, "")
yield write({ ctx, slug: name as FullSlug, ext: ".js", content: code })
}
},
async *partialEmit() {},
}
}

View File

@@ -58,7 +58,7 @@ function generateRSSFeed(cfg: GlobalConfiguration, idx: ContentIndexMap, limit?:
<title>${escapeHTML(content.title)}</title>
<link>https://${joinSegments(base, encodeURI(slug))}</link>
<guid>https://${joinSegments(base, encodeURI(slug))}</guid>
<description><![CDATA[ ${content.richContent ?? content.description} ]]></description>
<description>${content.richContent ?? content.description}</description>
<pubDate>${content.date?.toUTCString()}</pubDate>
</item>`

View File

@@ -25,7 +25,7 @@ async function processContent(
) {
const slug = fileData.slug!
const cfg = ctx.cfg.configuration
const externalResources = pageResources(pathToRoot(slug), resources, ctx.cfg.configuration)
const externalResources = pageResources(pathToRoot(slug), resources)
const componentData: QuartzComponentProps = {
ctx,
fileData,

View File

@@ -38,7 +38,7 @@ async function* processFolderInfo(
const slug = joinSegments(folder, "index") as FullSlug
const [tree, file] = folderContent
const cfg = ctx.cfg.configuration
const externalResources = pageResources(pathToRoot(slug), resources, ctx.cfg.configuration)
const externalResources = pageResources(pathToRoot(slug), resources)
const componentData: QuartzComponentProps = {
ctx,
fileData: file.data,

View File

@@ -1,7 +1,7 @@
export { ContentPage } from "./contentPage"
export { TagPage } from "./tagPage"
export { FolderPage } from "./folderPage"
export { ContentIndex } from "./contentIndex"
export { ContentIndex as ContentIndex } from "./contentIndex"
export { AliasRedirects } from "./aliases"
export { Assets } from "./assets"
export { Static } from "./static"
@@ -10,4 +10,3 @@ export { ComponentResources } from "./componentResources"
export { NotFoundPage } from "./404"
export { CNAME } from "./cname"
export { CustomOgImages } from "./ogImage"
export { SemanticIndex } from "./semantic"

View File

@@ -1,235 +0,0 @@
import { write } from "./helpers"
import { QuartzEmitterPlugin } from "../types"
import { FilePath, FullSlug, joinSegments, QUARTZ } from "../../util/path"
import { ReadTimeResults } from "reading-time"
import { GlobalConfiguration } from "../../cfg"
import { spawn } from "child_process"
const DEFAULT_MODEL_ID = "onnx-community/Qwen3-Embedding-0.6B-ONNX"
const defaults: GlobalConfiguration["semanticSearch"] = {
enable: true,
model: DEFAULT_MODEL_ID,
aot: false,
dims: 1024,
dtype: "fp32",
shardSizeRows: 1024,
hnsw: { M: 16, efConstruction: 200 },
chunking: {
chunkSize: 512,
chunkOverlap: 128,
noChunking: false,
},
vllm: {
enable: false,
vllmUrl:
process.env.VLLM_URL || process.env.VLLM_EMBED_URL || "http://127.0.0.1:8000/v1/embeddings",
concurrency: parseInt(process.env.VLLM_CONCURRENCY || "8", 10),
batchSize: parseInt(process.env.VLLM_BATCH_SIZE || "64", 10),
},
}
type ContentDetails = {
slug: string
title: string
filePath: FilePath
content: string
readingTime?: Partial<ReadTimeResults>
}
/**
* Check if uv is installed
*/
function checkUvInstalled(): Promise<boolean> {
return new Promise((resolve) => {
const proc = spawn("uv", ["--version"], { shell: true })
proc.on("error", () => resolve(false))
proc.on("close", (code) => resolve(code === 0))
})
}
/**
* Run the Python embedding build script using uv
* Script uses PEP 723 inline metadata for dependency management
*/
function runEmbedBuild(
jsonlPath: string,
outDir: string,
opts: {
model: string
dtype: string
dims: number
shardSizeRows: number
chunking: { chunkSize: number; chunkOverlap: number; noChunking: boolean }
vllm: { enable: boolean; vllmUrl?: string; concurrency: number; batchSize: number }
},
): Promise<void> {
return new Promise((resolve, reject) => {
const scriptPath = joinSegments(QUARTZ, "embed_build.py")
const args = [
"run",
scriptPath,
"--jsonl",
jsonlPath,
"--model",
opts.model,
"--out",
outDir,
"--dtype",
opts.dtype,
"--dims",
String(opts.dims),
"--shard-size",
String(opts.shardSizeRows),
"--chunk-size",
String(opts.chunking.chunkSize),
"--chunk-overlap",
String(opts.chunking.chunkOverlap),
]
if (opts.chunking.noChunking) {
args.push("--no-chunking")
}
if (opts.vllm.enable) {
args.push("--use-vllm")
if (opts.vllm.vllmUrl) {
args.push("--vllm-url", opts.vllm.vllmUrl)
}
args.push("--concurrency", String(opts.vllm.concurrency))
args.push("--batch-size", String(opts.vllm.batchSize))
}
console.log("\nRunning embedding generation:")
console.log(` uv ${args.join(" ")}`)
const env = { ...process.env }
if (opts.vllm.enable && !env.USE_VLLM) {
env.USE_VLLM = "1"
}
const proc = spawn("uv", args, {
stdio: "inherit",
shell: true,
env,
})
proc.on("error", (err) => {
reject(new Error(`Failed to spawn uv: ${err.message}`))
})
proc.on("close", (code) => {
if (code === 0) {
console.log("Embedding generation completed successfully")
resolve()
} else {
reject(new Error(`embed_build.py exited with code ${code}`))
}
})
})
}
export const SemanticIndex: QuartzEmitterPlugin<Partial<GlobalConfiguration["semanticSearch"]>> = (
opts,
) => {
const merged = { ...defaults, ...opts }
const o = {
enable: merged.enable!,
model: merged.model!,
aot: merged.aot!,
dims: merged.dims!,
dtype: merged.dtype!,
shardSizeRows: merged.shardSizeRows!,
hnsw: {
M: merged.hnsw?.M ?? defaults.hnsw!.M!,
efConstruction: merged.hnsw?.efConstruction ?? defaults.hnsw!.efConstruction!,
efSearch: merged.hnsw?.efSearch,
},
chunking: {
chunkSize: merged.chunking?.chunkSize ?? defaults.chunking!.chunkSize!,
chunkOverlap: merged.chunking?.chunkOverlap ?? defaults.chunking!.chunkOverlap!,
noChunking: merged.chunking?.noChunking ?? defaults.chunking!.noChunking!,
},
vllm: {
enable: merged.vllm?.enable ?? defaults.vllm!.enable!,
vllmUrl: merged.vllm?.vllmUrl ?? defaults.vllm!.vllmUrl,
concurrency: merged.vllm?.concurrency ?? defaults.vllm!.concurrency!,
batchSize: merged.vllm?.batchSize ?? defaults.vllm!.batchSize!,
},
}
if (!o.model) {
throw new Error("Semantic search requires a model identifier")
}
return {
name: "SemanticIndex",
getQuartzComponents() {
return []
},
async *partialEmit() {},
async *emit(ctx, content, _resources) {
if (!o.enable) return
const docs: ContentDetails[] = []
for (const [_, file] of content) {
const slug = file.data.slug!
const title = file.data.frontmatter?.title ?? slug
const text = file.data.text
if (text) {
docs.push({
slug,
title,
filePath: file.data.filePath!,
content: text,
readingTime: file.data.readingTime,
})
}
}
// Emit JSONL with the exact text used for embeddings
const jsonl = docs
.map((d) => ({ slug: d.slug, title: d.title, text: d.content }))
.map((o) => JSON.stringify(o))
.join("\n")
const jsonlSlug = "embeddings-text" as FullSlug
yield write({
ctx,
slug: jsonlSlug,
ext: ".jsonl",
content: jsonl,
})
// If aot is false, run the embedding generation script
if (!o.aot) {
console.log("\nGenerating embeddings (aot=false)...")
// Check for uv
const hasUv = await checkUvInstalled()
if (!hasUv) {
throw new Error(
"uv is required for embedding generation. Install it from https://docs.astral.sh/uv/",
)
}
const jsonlPath = joinSegments(ctx.argv.output, "embeddings-text.jsonl")
const outDir = joinSegments(ctx.argv.output, "embeddings")
try {
await runEmbedBuild(jsonlPath, outDir, o)
} catch (err) {
const message = err instanceof Error ? err.message : String(err)
throw new Error(`Embedding generation failed: ${message}`)
}
} else {
console.log(
"\nSkipping embedding generation (aot=true). Expecting pre-generated embeddings in public/embeddings/",
)
}
},
externalResources(_ctx) {
return {}
},
}
}

View File

@@ -73,7 +73,7 @@ async function processTagPage(
const slug = joinSegments("tags", tag) as FullSlug
const [tree, file] = tagContent
const cfg = ctx.cfg.configuration
const externalResources = pageResources(pathToRoot(slug), resources, ctx.cfg.configuration)
const externalResources = pageResources(pathToRoot(slug), resources)
const componentData: QuartzComponentProps = {
ctx,
fileData: file.data,

View File

@@ -488,7 +488,16 @@ export const ObsidianFlavoredMarkdown: QuartzTransformerPlugin<Partial<Options>>
{
data: { hProperties: { className: ["callout-content"] }, hName: "div" },
type: "blockquote",
children: [...calloutContent],
children: [
{
data: {
hProperties: { className: ["callout-content-inner"] },
hName: "div",
},
type: "blockquote",
children: [...calloutContent],
},
],
},
]
}

View File

@@ -1,6 +1,4 @@
import { QuartzTransformerPlugin } from "../types"
import rehypeRaw from "rehype-raw"
import { PluggableList } from "unified"
export interface Options {
/** Replace {{ relref }} with quartz wikilinks []() */
@@ -104,9 +102,5 @@ export const OxHugoFlavouredMarkdown: QuartzTransformerPlugin<Partial<Options>>
}
return src
},
htmlPlugins() {
const plugins: PluggableList = [rehypeRaw]
return plugins
},
}
}

View File

@@ -39,13 +39,23 @@ li,
ol,
ul,
.katex,
.math,
.typst-doc,
.typst-doc * {
.math {
color: var(--darkgray);
fill: var(--darkgray);
overflow-wrap: break-word;
text-wrap: pretty;
hyphens: auto;
}
p,
ul,
text,
a,
li,
ol,
ul,
.katex,
.math {
overflow-wrap: anywhere;
/* tr and td removed from list of selectors for overflow-wrap, allowing them to use default 'normal' property value */
}
.math {
@@ -211,7 +221,7 @@ a {
}
& .sidebar {
gap: 1.2rem;
gap: 2rem;
top: 0;
box-sizing: border-box;
padding: $topSpacing 2rem 2rem 2rem;

View File

@@ -11,11 +11,14 @@
& > .callout-content {
display: grid;
transition: grid-template-rows 0.1s cubic-bezier(0.02, 0.01, 0.47, 1);
overflow: hidden;
transition: grid-template-rows 0.3s ease;
& > :first-child {
margin-top: 0;
& > .callout-content-inner {
overflow: hidden;
& > :first-child {
margin-top: 0;
}
}
}
@@ -118,19 +121,8 @@
--callout-icon: var(--callout-icon-quote);
}
&.is-collapsed {
& > .callout-title > .fold-callout-icon {
transform: rotateZ(-90deg);
}
.callout-content > :first-child {
transition:
height 0.1s cubic-bezier(0.02, 0.01, 0.47, 1),
margin 0.1s cubic-bezier(0.02, 0.01, 0.47, 1);
overflow-y: clip;
height: 0;
margin-top: -1rem;
}
&.is-collapsed > .callout-title > .fold-callout-icon {
transform: rotateZ(-90deg);
}
}

View File

@@ -1,548 +0,0 @@
// Unified semantic search worker: handles data loading and query execution
import { env, pipeline } from "@huggingface/transformers"
import "onnxruntime-web/webgpu"
import "onnxruntime-web/wasm"
export {}
type VectorShardMeta = {
path: string
rows: number
rowOffset: number
byteLength: number
sha256?: string
byteStride: number
}
type LevelSection = {
level: number
indptr: { offset: number; elements: number; byteLength: number }
indices: { offset: number; elements: number; byteLength: number }
}
type ChunkMetadata = {
parentSlug: string
chunkId: number
}
type Manifest = {
version: number
dims: number
dtype: string
normalized: boolean
rows: number
shardSizeRows: number
vectors: {
dtype: string
rows: number
dims: number
shards: VectorShardMeta[]
}
ids: string[]
titles?: string[]
chunkMetadata?: Record<string, ChunkMetadata>
hnsw: {
M: number
efConstruction: number
entryPoint: number
maxLevel: number
graph: {
path: string
sha256?: string
levels: LevelSection[]
}
}
}
type InitMessage = {
type: "init"
cfg: any
manifestUrl: string
baseUrl?: string
disableCache?: boolean
}
type SearchMessage = { type: "search"; text: string; k: number; seq: number }
type ResetMessage = { type: "reset" }
type WorkerMessage = InitMessage | SearchMessage | ResetMessage
type ReadyMessage = { type: "ready" }
type ProgressMessage = {
type: "progress"
loadedRows: number
totalRows: number
}
type SearchHit = { id: number; score: number }
type SearchResultMessage = {
type: "search-result"
seq: number
semantic: SearchHit[]
}
type ErrorMessage = { type: "error"; seq?: number; message: string }
type WorkerState = "idle" | "loading" | "ready" | "error"
// IndexedDB configuration
const DB_NAME = "semantic-search-cache"
const STORE_NAME = "assets"
const DB_VERSION = 1
const hasIndexedDB = typeof indexedDB !== "undefined"
const supportsSharedArrayBuffer = typeof SharedArrayBuffer !== "undefined"
// State
let state: WorkerState = "idle"
let manifest: Manifest | null = null
let cfg: any = null
let vectorsView: Float32Array | null = null
let dims = 0
let rows = 0
let classifier: any = null
let envConfigured = false
let entryPoint = -1
let maxLevel = 0
let efDefault = 128
let levelGraph: { indptr: Uint32Array; indices: Uint32Array }[] = []
let abortController: AbortController | null = null
let dbPromise: Promise<IDBDatabase> | null = null
// IndexedDB helpers
function openDatabase(): Promise<IDBDatabase> {
if (!hasIndexedDB) {
return Promise.reject(new Error("indexedDB unavailable"))
}
if (!dbPromise) {
dbPromise = new Promise((resolve, reject) => {
const req = indexedDB.open(DB_NAME, DB_VERSION)
req.onupgradeneeded = () => {
const db = req.result
if (!db.objectStoreNames.contains(STORE_NAME)) {
db.createObjectStore(STORE_NAME)
}
}
req.onsuccess = () => resolve(req.result)
req.onerror = () => reject(req.error ?? new Error("failed to open cache store"))
})
}
return dbPromise
}
async function readAsset(hash: string): Promise<ArrayBuffer | null> {
if (!hasIndexedDB) {
return null
}
const db = await openDatabase()
return new Promise((resolve, reject) => {
const tx = db.transaction(STORE_NAME, "readonly")
const store = tx.objectStore(STORE_NAME)
const req = store.get(hash)
req.onsuccess = () => {
const value = req.result
if (value instanceof ArrayBuffer) {
resolve(value)
} else if (value && value.buffer instanceof ArrayBuffer) {
resolve(value.buffer as ArrayBuffer)
} else {
resolve(null)
}
}
req.onerror = () => reject(req.error ?? new Error("failed to read cached asset"))
})
}
async function writeAsset(hash: string, buffer: ArrayBuffer): Promise<void> {
if (!hasIndexedDB) {
return
}
const db = await openDatabase()
await new Promise<void>((resolve, reject) => {
const tx = db.transaction(STORE_NAME, "readwrite")
const store = tx.objectStore(STORE_NAME)
const req = store.put(buffer, hash)
req.onsuccess = () => resolve()
req.onerror = () => reject(req.error ?? new Error("failed to cache asset"))
})
}
function toAbsolute(path: string, baseUrl?: string): string {
if (path.startsWith("http://") || path.startsWith("https://")) {
return path
}
const base = baseUrl ?? self.location.origin
return new URL(path, base).toString()
}
async function fetchBinary(
path: string,
disableCache: boolean,
sha?: string,
): Promise<ArrayBuffer> {
if (!disableCache && sha && hasIndexedDB) {
try {
const cached = await readAsset(sha)
if (cached) {
return cached
}
} catch {
// fall through to network fetch on cache errors
}
}
const res = await fetch(path, { signal: abortController?.signal ?? undefined })
if (!res.ok) {
throw new Error(`failed to fetch ${path}: ${res.status} ${res.statusText}`)
}
const payload = await res.arrayBuffer()
if (!disableCache && sha && hasIndexedDB) {
try {
await writeAsset(sha, payload)
} catch {
// ignore cache write failures
}
}
return payload
}
async function populateVectors(
manifest: Manifest,
baseUrl: string | undefined,
disableCache: boolean | undefined,
): Promise<{ buffer: Float32Array; rowsLoaded: number }> {
if (manifest.vectors.dtype !== "fp32") {
throw new Error(`unsupported embedding dtype '${manifest.vectors.dtype}', regenerate with fp32`)
}
const rows = manifest.rows
const dims = manifest.dims
const totalBytes = rows * dims * Float32Array.BYTES_PER_ELEMENT
const buffer = supportsSharedArrayBuffer
? new Float32Array(new SharedArrayBuffer(totalBytes))
: new Float32Array(totalBytes)
let loadedRows = 0
for (const shard of manifest.vectors.shards) {
const absolute = toAbsolute(shard.path, baseUrl)
const payload = await fetchBinary(absolute, Boolean(disableCache), shard.sha256)
const view = new Float32Array(payload)
if (view.length !== shard.rows * dims) {
throw new Error(
`shard ${shard.path} has mismatched length (expected ${shard.rows * dims}, got ${view.length})`,
)
}
buffer.set(view, shard.rowOffset * dims)
loadedRows = Math.min(rows, shard.rowOffset + shard.rows)
const progress: ProgressMessage = {
type: "progress",
loadedRows,
totalRows: rows,
}
self.postMessage(progress)
}
return { buffer, rowsLoaded: loadedRows }
}
async function populateGraph(
manifest: Manifest,
baseUrl: string | undefined,
disableCache: boolean | undefined,
): Promise<ArrayBuffer> {
const graphMeta = manifest.hnsw.graph
const absolute = toAbsolute(graphMeta.path, baseUrl)
return await fetchBinary(absolute, Boolean(disableCache), graphMeta.sha256)
}
function configureRuntimeEnv() {
if (envConfigured) return
env.allowLocalModels = false
env.allowRemoteModels = true
const wasmBackend = env.backends?.onnx?.wasm
if (!wasmBackend) {
throw new Error("transformers.js ONNX runtime backend unavailable")
}
const cdnBase = `https://cdn.jsdelivr.net/npm/@huggingface/transformers@${env.version}/dist/`
wasmBackend.wasmPaths = cdnBase
envConfigured = true
}
async function ensureEncoder() {
if (classifier) return
if (!cfg?.model) {
throw new Error("semantic worker missing model identifier")
}
configureRuntimeEnv()
const dtype = typeof cfg?.dtype === "string" && cfg.dtype.length > 0 ? cfg.dtype : "fp32"
const pipelineOpts: Record<string, unknown> = {
device: "wasm",
dtype,
local_files_only: false,
}
classifier = await pipeline("feature-extraction", cfg.model, pipelineOpts)
cfg.dtype = dtype
}
function vectorSlice(id: number): Float32Array {
if (!vectorsView) {
throw new Error("vector buffer not configured")
}
const start = id * dims
const end = start + dims
return vectorsView.subarray(start, end)
}
function dot(a: Float32Array, b: Float32Array): number {
let s = 0
for (let i = 0; i < dims; i++) {
s += a[i] * b[i]
}
return s
}
function neighborsFor(level: number, node: number): Uint32Array {
const meta = levelGraph[level]
if (!meta) return new Uint32Array()
const { indptr, indices } = meta
if (node < 0 || node + 1 >= indptr.length) return new Uint32Array()
const start = indptr[node]
const end = indptr[node + 1]
return indices.subarray(start, end)
}
function insertSortedDescending(arr: SearchHit[], item: SearchHit) {
let idx = arr.length
while (idx > 0 && arr[idx - 1].score < item.score) {
idx -= 1
}
arr.splice(idx, 0, item)
}
function bruteForceSearch(query: Float32Array, k: number): SearchHit[] {
if (!vectorsView) return []
const hits: SearchHit[] = []
for (let id = 0; id < rows; id++) {
const score = dot(query, vectorSlice(id))
if (hits.length < k) {
insertSortedDescending(hits, { id, score })
} else if (score > hits[hits.length - 1].score) {
insertSortedDescending(hits, { id, score })
hits.length = k
}
}
return hits
}
function hnswSearch(query: Float32Array, k: number): SearchHit[] {
if (!manifest || !vectorsView || entryPoint < 0 || levelGraph.length === 0) {
return bruteForceSearch(query, k)
}
const ef = Math.max(efDefault, k * 10)
let ep = entryPoint
let epScore = dot(query, vectorSlice(ep))
for (let level = maxLevel; level > 0; level--) {
let changed = true
while (changed) {
changed = false
const neigh = neighborsFor(level, ep)
for (let i = 0; i < neigh.length; i++) {
const candidate = neigh[i]
if (candidate >= rows) continue
const score = dot(query, vectorSlice(candidate))
if (score > epScore) {
epScore = score
ep = candidate
changed = true
}
}
}
}
const visited = new Set<number>()
const candidateQueue: SearchHit[] = []
const best: SearchHit[] = []
insertSortedDescending(candidateQueue, { id: ep, score: epScore })
insertSortedDescending(best, { id: ep, score: epScore })
visited.add(ep)
while (candidateQueue.length > 0) {
const current = candidateQueue.shift()!
const worstBest = best.length >= ef ? best[best.length - 1].score : -Infinity
if (current.score < worstBest && best.length >= ef) {
break
}
const neigh = neighborsFor(0, current.id)
for (let i = 0; i < neigh.length; i++) {
const candidate = neigh[i]
if (candidate >= rows || visited.has(candidate)) continue
visited.add(candidate)
const score = dot(query, vectorSlice(candidate))
const hit = { id: candidate, score }
insertSortedDescending(candidateQueue, hit)
if (best.length < ef || score > best[best.length - 1].score) {
insertSortedDescending(best, hit)
if (best.length > ef) {
best.pop()
}
}
}
}
best.sort((a, b) => b.score - a.score)
return best.slice(0, k)
}
async function embed(text: string, isQuery: boolean = false): Promise<Float32Array> {
await ensureEncoder()
// Apply model-specific prefixes for asymmetric search
let prefixedText = text
if (cfg?.model) {
const modelName = cfg.model.toLowerCase()
switch (true) {
case modelName.includes("e5"): {
// E5 models require query: or passage: prefix
prefixedText = isQuery ? `query: ${text}` : `passage: ${text}`
break
}
case modelName.includes("qwen") && modelName.includes("embedding"): {
// Qwen3-Embedding requires task instruction for queries only
if (isQuery) {
const task = "Given a web search query, retrieve relevant passages that answer the query"
prefixedText = `Instruct: ${task}\nQuery: ${text}`
}
// Documents use plain text (no prefix)
break
}
case modelName.includes("embeddinggemma"): {
// embeddinggemma requires specific prefixes
prefixedText = isQuery
? `task: search result | query: ${text}`
: `title: none | text: ${text}`
break
}
default:
break
}
}
const out = await classifier(prefixedText, { pooling: "mean", normalize: true })
const data = Array.from(out?.data ?? out) as number[]
const vec = new Float32Array(dims)
for (let i = 0; i < dims; i++) vec[i] = data[i] ?? 0
return vec
}
async function handleInit(msg: InitMessage) {
if (state === "loading" || state === "ready") {
throw new Error("worker already initialized or loading")
}
state = "loading"
abortController?.abort()
abortController = new AbortController()
try {
cfg = msg.cfg
const manifestUrl = toAbsolute(msg.manifestUrl, msg.baseUrl)
const response = await fetch(manifestUrl, { signal: abortController.signal })
if (!response.ok) {
throw new Error(
`failed to fetch manifest ${manifestUrl}: ${response.status} ${response.statusText}`,
)
}
manifest = (await response.json()) as Manifest
if (manifest.vectors.dtype !== "fp32") {
throw new Error(
`unsupported embedding dtype '${manifest.vectors.dtype}', regenerate with fp32`,
)
}
dims = manifest.dims
rows = manifest.rows
const { buffer: vectorBuffer } = await populateVectors(manifest, msg.baseUrl, msg.disableCache)
vectorsView = vectorBuffer
const graphBuffer = await populateGraph(manifest, msg.baseUrl, msg.disableCache)
entryPoint = manifest.hnsw.entryPoint
maxLevel = manifest.hnsw.maxLevel
efDefault = Math.max(64, manifest.hnsw.M * 4)
levelGraph = manifest.hnsw.graph.levels.map((level) => {
const indptr = new Uint32Array(graphBuffer, level.indptr.offset, level.indptr.elements)
const indices = new Uint32Array(graphBuffer, level.indices.offset, level.indices.elements)
return { indptr, indices }
})
state = "ready"
const ready: ReadyMessage = { type: "ready" }
self.postMessage(ready)
} catch (err) {
state = "error"
throw err
}
}
async function handleSearch(msg: SearchMessage) {
if (state !== "ready") {
throw new Error("worker not ready for search")
}
if (!manifest || !vectorsView) {
throw new Error("semantic worker not configured")
}
const queryVec = await embed(msg.text, true)
const semanticHits = hnswSearch(queryVec, Math.max(1, msg.k))
const message: SearchResultMessage = {
type: "search-result",
seq: msg.seq,
semantic: semanticHits,
}
self.postMessage(message)
}
function handleReset() {
abortController?.abort()
abortController = null
state = "idle"
manifest = null
cfg = null
vectorsView = null
dims = 0
rows = 0
classifier = null
envConfigured = false
levelGraph = []
entryPoint = -1
maxLevel = 0
}
self.onmessage = (event: MessageEvent<WorkerMessage>) => {
const data = event.data
if (data.type === "reset") {
handleReset()
return
}
if (data.type === "init") {
void handleInit(data).catch((err: unknown) => {
const message: ErrorMessage = {
type: "error",
message: err instanceof Error ? err.message : String(err),
}
self.postMessage(message)
})
return
}
if (data.type === "search") {
void handleSearch(data).catch((err: unknown) => {
const message: ErrorMessage = {
type: "error",
seq: data.seq,
message: err instanceof Error ? err.message : String(err),
}
self.postMessage(message)
})
}
}