2 Commits

Author SHA1 Message Date
Anthony Berg
9d28ebba7b fix: missing bracket around multiple variables
(cherry picked from commit e954b5b181)
2025-03-26 14:22:55 +01:00
Anthony Berg
277a6b4a3c fix: deprecated modules on LUMI 2025-03-26 14:20:49 +01:00
11 changed files with 152 additions and 179 deletions

1
.gitignore vendored
View File

@@ -186,6 +186,7 @@ cython_debug/
.pypirc
# CUDA
cuda_cache/
# Taken from: https://github.com/github/gitignore/blob/main/CUDA.gitignore
*.i

View File

@@ -35,8 +35,6 @@ import gc
import netCDF4
import json
from tqdm import tqdm
#import pycuda.compiler as cuda_compiler
#import pycuda.gpuarray
#import pycuda.driver as cuda
@@ -180,11 +178,11 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
profiling_data_sim_runner["end"]["t_sim_init"] = time.time()
#Start simulation loop
# progress_printer = ProgressPrinter(save_times[-1], print_every=10)
for k, t_step in tqdm(enumerate(t_steps), desc="Simulation Loop"):
progress_printer = ProgressPrinter(save_times[-1], print_every=10)
for k in range(len(save_times)):
#Get target time and step size there
# t_step = t_steps[k]
# t_end = save_times[k]
t_step = t_steps[k]
t_end = save_times[k]
#Sanity check simulator
try:
@@ -196,7 +194,7 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
profiling_data_sim_runner["start"]["t_full_step"] += time.time()
#Simulate
if t_step > 0.0:
if (t_step > 0.0):
sim.simulate(t_step, dt)
profiling_data_sim_runner["end"]["t_full_step"] += time.time()
@@ -213,11 +211,11 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
profiling_data_sim_runner["end"]["t_nc_write"] += time.time()
#Write progress to screen
# print_string = progress_printer.getPrintString(t_end)
# if (print_string):
# logger.debug(print_string)
print_string = progress_printer.getPrintString(t_end)
if (print_string):
logger.debug(print_string)
logger.debug("Simulated to t={:f} in {:d} timesteps (average dt={:f})".format(save_times[-1], sim.simSteps(), sim.simTime() / sim.simSteps()))
logger.debug("Simulated to t={:f} in {:d} timesteps (average dt={:f})".format(t_end, sim.simSteps(), sim.simTime() / sim.simSteps()))
return outdata.filename, profiling_data_sim_runner, sim.profiling_data_mpi
#return outdata.filename
@@ -308,7 +306,7 @@ class IPEngine(object):
import ipyparallel
self.cluster = ipyparallel.Client()#profile='mpi')
time.sleep(3)
while len(self.cluster.ids) != n_engines:
while(len(self.cluster.ids) != n_engines):
time.sleep(0.5)
self.logger.info("Waiting for cluster...")
self.cluster = ipyparallel.Client()#profile='mpi')
@@ -435,58 +433,58 @@ class DataDumper(object):
# class ProgressPrinter(object):
# """
# Small helper class for
# """
# def __init__(self, total_steps, print_every=5):
# self.logger = logging.getLogger(__name__)
# self.start = time.time()
# self.total_steps = total_steps
# self.print_every = print_every
# self.next_print_time = self.print_every
# self.last_step = 0
# self.secs_per_iter = None
class ProgressPrinter(object):
"""
Small helper class for
"""
def __init__(self, total_steps, print_every=5):
self.logger = logging.getLogger(__name__)
self.start = time.time()
self.total_steps = total_steps
self.print_every = print_every
self.next_print_time = self.print_every
self.last_step = 0
self.secs_per_iter = None
# def getPrintString(self, step):
# elapsed = time.time() - self.start
# if (elapsed > self.next_print_time):
# dt = elapsed - (self.next_print_time - self.print_every)
# dsteps = step - self.last_step
# steps_remaining = self.total_steps - step
def getPrintString(self, step):
elapsed = time.time() - self.start
if (elapsed > self.next_print_time):
dt = elapsed - (self.next_print_time - self.print_every)
dsteps = step - self.last_step
steps_remaining = self.total_steps - step
# if (dsteps == 0):
# return
if (dsteps == 0):
return
# self.last_step = step
# self.next_print_time = elapsed + self.print_every
self.last_step = step
self.next_print_time = elapsed + self.print_every
# if not self.secs_per_iter:
# self.secs_per_iter = dt / dsteps
# self.secs_per_iter = 0.2*self.secs_per_iter + 0.8*(dt / dsteps)
if not self.secs_per_iter:
self.secs_per_iter = dt / dsteps
self.secs_per_iter = 0.2*self.secs_per_iter + 0.8*(dt / dsteps)
# remaining_time = steps_remaining * self.secs_per_iter
remaining_time = steps_remaining * self.secs_per_iter
# return "{:s}. Total: {:s}, elapsed: {:s}, remaining: {:s}".format(
# ProgressPrinter.progressBar(step, self.total_steps),
# ProgressPrinter.timeString(elapsed + remaining_time),
# ProgressPrinter.timeString(elapsed),
# ProgressPrinter.timeString(remaining_time))
return "{:s}. Total: {:s}, elapsed: {:s}, remaining: {:s}".format(
ProgressPrinter.progressBar(step, self.total_steps),
ProgressPrinter.timeString(elapsed + remaining_time),
ProgressPrinter.timeString(elapsed),
ProgressPrinter.timeString(remaining_time))
# def timeString(seconds):
# seconds = int(max(seconds, 1))
# minutes, seconds = divmod(seconds, 60)
# hours, minutes = divmod(minutes, 60)
# periods = [('h', hours), ('m', minutes), ('s', seconds)]
# time_string = ' '.join('{}{}'.format(value, name)
# for name, value in periods
# if value)
# return time_string
def timeString(seconds):
seconds = int(max(seconds, 1))
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
periods = [('h', hours), ('m', minutes), ('s', seconds)]
time_string = ' '.join('{}{}'.format(value, name)
for name, value in periods
if value)
return time_string
# def progressBar(step, total_steps, width=30):
# progress = np.round(width * step / total_steps).astype(np.int32)
# progressbar = "0% [" + "#"*(progress) + "="*(width-progress) + "] 100%"
# return progressbar
def progressBar(step, total_steps, width=30):
progress = np.round(width * step / total_steps).astype(np.int32)
progressbar = "0% [" + "#"*(progress) + "="*(width-progress) + "] 100%"
return progressbar
"""

View File

@@ -25,7 +25,6 @@ import numpy as np
import math
import logging
from enum import IntEnum
from tqdm import tqdm
#import pycuda.compiler as cuda_compiler
#import pycuda.gpuarray
@@ -157,7 +156,7 @@ class BaseSimulator(object):
self.num_substeps = num_substeps
#Handle autotuning block size
if self.context.autotuner:
if (self.context.autotuner):
peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
block_width = int(peak_configuration["block_width"])
block_height = int(peak_configuration["block_height"])
@@ -196,45 +195,42 @@ class BaseSimulator(object):
Requires that the step() function is implemented in the subclasses
"""
# printer = Common.ProgressPrinter(t)
printer = Common.ProgressPrinter(t)
t_start = self.simTime()
t_end = t_start + t
update_dt = True
if dt is not None:
if (dt is not None):
update_dt = False
self.dt = dt
for _ in tqdm(range(math.ceil((t_end - t_start) / self.dt)), desc="Simulation"):
while(self.simTime() < t_end):
# Update dt every 100 timesteps and cross your fingers it works
# for the next 100
# TODO this is probably broken now after fixing the "infinite" loop
if update_dt and (self.simSteps() % 100 == 0):
if (update_dt and (self.simSteps() % 100 == 0)):
self.dt = self.computeDt()*self.cfl_scale
# Compute timestep for "this" iteration (i.e., shorten last timestep)
current_dt = np.float32(min(self.dt, t_end-self.simTime()))
# Stop if end reached (should not happen)
if current_dt <= 0.0:
if (current_dt <= 0.0):
self.logger.warning("Timestep size {:d} is less than or equal to zero!".format(self.simSteps()))
break
# Step forward in time
self.step(current_dt)
#Print info
# print_string = printer.getPrintString(self.simTime() - t_start)
# if (print_string):
# self.logger.info("%s: %s", self, print_string)
# try:
# self.check()
# except AssertionError as e:
# e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()),)
# raise
print("Done")
print_string = printer.getPrintString(self.simTime() - t_start)
if (print_string):
self.logger.info("%s: %s", self, print_string)
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()),)
raise
def step(self, dt):

View File

@@ -1,26 +0,0 @@
#!/bin/bash -l
#SBATCH --job-name=lumi
#SBATCH --account=project_4650000xx
#SBATCH --time=00:10:00
#SBATCH --partition=dev-g
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gpus-per-node=8
#SBATCH --output=%x-%j.out
#SBATCH --exclusive
N=$SLURM_JOB_NUM_NODES
echo "--nbr of nodes:", $N
echo "--total nbr of gpus:", $SLURM_NTASKS
MyDir=/project/project_4650000xx
MyApplication=${MyDir}/FiniteVolumeGPU_HIP/mpiTesting.py
Container=${MyDir}/FiniteVolumeGPU_HIP/my_container.sif
CPU_BIND="map_cpu:49,57,17,25,1,9,33,41"
export MPICH_GPU_SUPPORT_ENABLED=1
srun --cpu-bind=${CPU_BIND} --mpi=pmi2 \
apptainer exec "${Container}" \
python ${MyApplication} -nx 1024 -ny 1024 --profile

39
Jobs/job_lumi.slrum Normal file
View File

@@ -0,0 +1,39 @@
#!/bin/bash -e
#SBATCH --job-name=lumi
#SBATCH --account=project_4650000xx
#SBATCH --time=00:10:00
#SBATCH --partition=dev-g
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gpus=8
#SBATCH --gpus-per-node=8
#SBATCH -o %x-%j.out
#SBATCH --exclusive
#
N=$SLURM_JOB_NUM_NODES
echo "--nbr of nodes:", $N
echo "--total nbr of gpus:", $SLURM_NTASKS
Mydir=/project/project_4650000xx
Myapplication=${Mydir}/FiniteVolumeGPU_hip/mpiTesting.py
#modules
ml LUMI/24.03 partition/G
ml lumi-container-wrapper
ml cray-python/3.11.7
ml rocm/5.4.6
ml craype-accel-amd-gfx90a
ml cray-mpich/8.1.29
export PATH="/project/project_4650000xx/FiniteVolumeGPU_hip/MyCondaEnv/bin:$PATH"
#missing library
export LD_LIBRARY_PATH=/opt/cray/pe/mpich/8.1.29/ofi/cray/17.0/lib-abi-mpich:$LD_LIBRARY_PATH
#Binding mask
bind_mask="0x${fe}000000000000,0x${fe}00000000000000,0x${fe}0000,0x${fe}000000,0x${fe},0x${fe}00,0x${fe}00000000,0x${fe}0000000000"
srun --cpu-bind=mask_cpu:$bind_mask \
python ${Myapplication} -nx 1024 -ny 1024 --profile

View File

@@ -1,27 +0,0 @@
#!/bin/bash -l
#SBATCH --job-name=lumi
#SBATCH --account=project_4650000xx
#SBATCH --time=00:10:00
#SBATCH --partition=dev-g
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gpus-per-node=8
#SBATCH --output=%x-%j.out
#SBATCH --exclusive
N=$SLURM_JOB_NUM_NODES
echo "--nbr of nodes:", $N
echo "--total nbr of gpus:", $SLURM_NTASKS
MyDir=/project/project_4650000xx
MyApplication=${MyDir}/FiniteVolumeGPU_HIP/mpiTesting.py
CondaEnv=${MyDir}/FiniteVolumeGPU_HIP/MyCondaEnv/bin
export PATH="${CondaEnv}:$PATH"
CPU_BIND="map_cpu:49,57,17,25,1,9,33,41"
export MPICH_GPU_SUPPORT_ENABLED=1
srun --cpu-bind=${CPU_BIND} --mpi=pmi2 \
python ${MyApplication} -nx 1024 -ny 1024 --profile

View File

@@ -5,53 +5,48 @@ This is a HIP version of the [FiniteVolume code](https://github.com/babrodtk/Fin
## Setup on LUMI-G
Here is a step-by-step guide on installing packages on LUMI-G
### Step 1: run conda-container
Installation via conda can be done as:
```shell
ml LUMI/24.03 partition/G
ml lumi-container-wrapper
### Step 1: Install rocm-5.4.6 with Easybuild
```
export EBU_USER_PREFIX=/project/project_xxxxxx/EasyBuild
ml LUMI/24.03 partition/G
ml EasyBuild-user
export PYTHONIOENCODING=utf-8
eb rocm-5.4.6.eb -r
```
### Step 2: run conda-container
Installation via conda can be done as:
```
ml LUMI/24.03 partition/G
ml lumi-container-wrapper/0.3.3-cray-python-3.11.7
```
```
```shell
conda-containerize new --prefix MyCondaEnv conda_environment_lumi.yml
```
where the file `conda_environment_lumi.yml` contains packages to be installed.
### Step 1 alternative: Convert to a singularity container with cotainr
Load the required modules first
```shell
ml CrayEnv
ml cotainr
### Step 3: Set the env. variable to search for binaries
```
export the bin path: export PATH="$PWD/MyCondaEnv/bin:$PATH"
```
### An alternative: Convert to a singularity container with cotainr
```
Then build the Singularity/Apptainer container
```shell
cotainr build my_container.sif --system=lumi-g --conda-env=conda_environment_lumi.yml
```
### Step 2: Modify Slurm Job file
Depending on your build method, update [`Jobs/job_lumi.slurm`](Jobs/job_lumi.slurm) if `conda-containerize` was used, or [`Jobs/job_apptainer_lumi.slurm`](Jobs/job_apptainer_lumi.slurm) if `containr` was used.
In the job file, the required changes is to match your project allocation,
and the directories of where the simulator and container is stored.
### Step 3: Run the Slurm Job
If `conda-containerize` was used for building:
```shell
sbatch Jobs/job_lumi.slurm
```
Otherwise, if `containr` was used for building:
```shell
sbatch Jobs/job_apptainer_lumi.slurm
```
### Troubleshooting
#### Error when running MPI.
### Error when running MPI.
```
`MPI startup(): PMI server not found. Please set I_MPI_PMI_LIBRARY variable if it is not a singleton case.
```
This can be resolved by exporting this:
```
export I_MPI_PMI_LIBRARY=/opt/cray/pe/mpich/8.1.29/ofi/cray/17.0/lib/libmpi.so
```
export I_MPI_PMI_LIBRARY=/opt/cray/pe/mpich/8.1.27/ofi/cray/14.0/lib/libmpi.so
```
### Install hip-python
```
python -m pip install -i https://test.pypi.org/simple/ hip-python==5.4.3.470.16
```
The testing was done with this specific version `hip-python==5.4.3.470.16`

View File

@@ -13,9 +13,8 @@ dependencies:
- pytools
- netcdf4
- scipy
- tqdm
- pip:
- hip-python==6.2.0.499.16
- hip-python==5.4.3.470.16
- -i https://test.pypi.org/simple/

View File

@@ -70,7 +70,7 @@ def hip_check(call_result):
args = parser.parse_args()
if args.profile:
if(args.profile):
profiling_data = {}
# profiling: total run time
t_total_start = time.time()
@@ -79,8 +79,6 @@ if args.profile:
# Get MPI COMM to use
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
####
@@ -88,7 +86,7 @@ rank = comm.Get_rank()
####
log_level_console = 20
log_level_file = 10
log_filename = 'mpi_' + str(rank) + '.log'
log_filename = 'mpi_' + str(comm.rank) + '.log'
logger = logging.getLogger('GPUSimulators')
logger.setLevel(min(log_level_console, log_level_file))
@@ -112,7 +110,7 @@ logger.info("File logger using level %s to %s",
# Initialize MPI grid etc
####
logger.info("Creating MPI grid")
grid = MPISimulator.MPIGrid(comm)
grid = MPISimulator.MPIGrid(MPI.COMM_WORLD)
"""
job_id = int(os.environ["SLURM_JOB_ID"])
@@ -154,7 +152,7 @@ gamma = 1.4
#save_times = np.linspace(0, 0.000099, 11)
#save_times = np.linspace(0, 0.000099, 2)
save_times = np.linspace(0, 0.0000999, 2)
outfile = "mpi_out_" + str(rank) + ".nc"
outfile = "mpi_out_" + str(MPI.COMM_WORLD.rank) + ".nc"
save_var_names = ['rho', 'rho_u', 'rho_v', 'E']
arguments = IC.genKelvinHelmholtz(nx, ny, gamma, grid=grid)
@@ -162,7 +160,7 @@ arguments['context'] = cuda_context
arguments['theta'] = 1.2
arguments['grid'] = grid
if args.profile:
if(args.profile):
t_init_end = time.time()
t_init = t_init_end - t_init_start
profiling_data["t_init"] = t_init
@@ -183,14 +181,14 @@ def genSim(grid, **kwargs):
(outfile, sim_runner_profiling_data, sim_profiling_data) = Common.runSimulation(
genSim, arguments, outfile, save_times, save_var_names, dt)
if args.profile:
if(args.profile):
t_total_end = time.time()
t_total = t_total_end - t_total_start
profiling_data["t_total"] = t_total
print("Total run time on rank " + str(rank) + " is " + str(t_total) + " s")
print("Total run time on rank " + str(MPI.COMM_WORLD.rank) + " is " + str(t_total) + " s")
# write profiling to json file
if args.profile and rank == 0:
if(args.profile and MPI.COMM_WORLD.rank == 0):
job_id = ""
if "SLURM_JOB_ID" in os.environ:
job_id = int(os.environ["SLURM_JOB_ID"])
@@ -201,7 +199,7 @@ if args.profile and rank == 0:
str(job_id) + "_" + str(allocated_nodes) + "_nodes_and_" + str(allocated_gpus) + "_GPUs_profiling.json"
profiling_data["outfile"] = outfile
else:
profiling_file = "MPI_" + str(size) + "_procs_and_" + str(num_cuda_devices) + "_GPUs_profiling.json"
profiling_file = "MPI_" + str(MPI.COMM_WORLD.size) + "_procs_and_" + str(num_cuda_devices) + "_GPUs_profiling.json"
for stage in sim_runner_profiling_data["start"].keys():
profiling_data[stage] = sim_runner_profiling_data["end"][stage] - sim_runner_profiling_data["start"][stage]
@@ -216,7 +214,7 @@ if args.profile and rank == 0:
profiling_data["slurm_job_id"] = job_id
profiling_data["n_cuda_devices"] = str(num_cuda_devices)
profiling_data["n_processes"] = str(size)
profiling_data["n_processes"] = str(MPI.COMM_WORLD.size)
profiling_data["git_hash"] = Common.getGitHash()
profiling_data["git_status"] = Common.getGitStatus()