2018-07-25 15:06:56 +02:00

160 lines
5.3 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the 2nd order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
import numpy as np
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
import pycuda.driver as cuda
from SWESimulators import Common
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class HLL2:
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def __init__(self, \
context, \
h0, hu0, hv0, \
nx, ny, \
dx, dy, dt, \
g, \
theta=1.8, \
block_width=16, block_height=16):
#Create a CUDA stream
self.stream = cuda.Stream()
#Get kernels
self.hll2_module = context.get_kernel("HLL2_kernel.cu", block_width, block_height)
self.hll2_kernel = self.hll2_module.get_function("HLL2Kernel")
self.hll2_kernel.prepare("iifffffiPiPiPiPiPiPi")
#Create data by uploading to device
ghost_cells_x = 2
ghost_cells_y = 2
self.data = Common.SWEDataArakawaA(self.stream, \
nx, ny, \
ghost_cells_x, ghost_cells_y, \
h0, hu0, hv0)
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
#OpenCL kernel
self.nx = np.int32(nx)
self.ny = np.int32(ny)
self.dx = np.float32(dx)
self.dy = np.float32(dy)
self.dt = np.float32(dt)
self.g = np.float32(g)
self.theta = np.float32(theta)
#Initialize time
self.t = np.float32(0.0)
#Compute kernel launch parameters
self.local_size = (block_width, block_height, 1)
self.global_size = ( \
int(np.ceil(self.nx / float(self.local_size[0]))), \
int(np.ceil(self.ny / float(self.local_size[1]))) \
)
def __str__(self):
return "Harten-Lax-van Leer (2nd order)"
"""
Function which steps n timesteps
"""
def step(self, t_end=0.0):
n = int(t_end / (2.0*self.dt) + 1)
for i in range(0, n):
#Dimensional splitting: second order accurate for every other timestep,
#thus run two timesteps in a go
local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
if (local_dt <= 0.0):
break
#Along X, then Y
self.hll2_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
np.int32(0), \
self.data.h0.data.gpudata, self.data.h0.pitch, \
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
self.data.h1.data.gpudata, self.data.h1.pitch, \
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
self.data.hv1.data.gpudata, self.data.hv1.pitch)
self.data.swap()
#Along Y, then X
self.hll2_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
np.int32(1), \
self.data.h0.data.gpudata, self.data.h0.pitch, \
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
self.data.h1.data.gpudata, self.data.h1.pitch, \
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
self.data.hv1.data.gpudata, self.data.hv1.pitch)
self.data.swap()
self.t += local_dt
return self.t
def download(self):
return self.data.download(self.stream)