mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 06:24:13 +02:00
Updated compilation of kernels etc
This commit is contained in:
parent
7cecd23e59
commit
c6758b477b
File diff suppressed because one or more lines are too long
@ -1,40 +1,99 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
import pycuda.compiler as cuda_compiler
|
||||
import pycuda.gpuarray
|
||||
import pycuda.driver as cuda
|
||||
|
||||
"""
|
||||
Static function which reads a text file and creates an OpenCL kernel from that
|
||||
Class which keeps track of the CUDA context and some helper functions
|
||||
"""
|
||||
def get_kernel(kernel_filename, block_width, block_height):
|
||||
import datetime
|
||||
|
||||
#Create define string
|
||||
define_string = "#define block_width " + str(block_width) + "\n"
|
||||
define_string += "#define block_height " + str(block_height) + "\n\n"
|
||||
|
||||
|
||||
#Read the proper program
|
||||
module_path = os.path.dirname(os.path.realpath(__file__))
|
||||
fullpath = os.path.join(module_path, kernel_filename)
|
||||
#with open(fullpath, "r") as kernel_file:
|
||||
# kernel_string = define_string + kernel_file.read()
|
||||
# kernel = cuda_compiler.SourceModule(kernel_string, include_dirs=[module_path], no_extern_c=True)
|
||||
|
||||
kernel_string = define_string + '#include "' + fullpath + '"'
|
||||
kernel = cuda_compiler.SourceModule(kernel_string, include_dirs=[module_path])
|
||||
class CudaContext(object):
|
||||
def __init__(self, verbose=True, blocking=False):
|
||||
self.verbose = verbose
|
||||
self.blocking = blocking
|
||||
self.kernels = {}
|
||||
|
||||
return kernel
|
||||
cuda.init(flags=0)
|
||||
|
||||
if (self.verbose):
|
||||
print("CUDA version " + str(cuda.get_version()))
|
||||
print("Driver version " + str(cuda.get_driver_version()))
|
||||
|
||||
self.cuda_device = cuda.Device(0)
|
||||
if (self.verbose):
|
||||
print("Using " + self.cuda_device.name())
|
||||
print(" => compute capability: " + str(self.cuda_device.compute_capability()))
|
||||
print(" => memory: " + str(self.cuda_device.total_memory() / (1024*1024)) + " MB")
|
||||
|
||||
if (self.blocking):
|
||||
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_BLOCKING_SYNC)
|
||||
if (self.verbose):
|
||||
print("=== WARNING ===")
|
||||
print("Using blocking context")
|
||||
print("=== WARNING ===")
|
||||
else:
|
||||
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_AUTO)
|
||||
|
||||
|
||||
def __del__(self, *args):
|
||||
if self.verbose:
|
||||
print("Cleaning up CUDA context")
|
||||
|
||||
self.cuda_context.detach()
|
||||
cuda.Context.pop()
|
||||
|
||||
|
||||
"""
|
||||
Reads a text file and creates an OpenCL kernel from that
|
||||
"""
|
||||
def get_kernel(self, kernel_filename, block_width, block_height):
|
||||
# Generate a kernel ID for our cache
|
||||
module_path = os.path.dirname(os.path.realpath(__file__))
|
||||
fullpath = os.path.join(module_path, kernel_filename)
|
||||
kernel_date = os.path.getmtime(fullpath)
|
||||
with open(fullpath, "r") as kernel_file:
|
||||
kernel_hash = hash(kernel_file.read())
|
||||
kernel_id = kernel_filename + ":" + str(kernel_hash) + ":" + str(kernel_date)
|
||||
|
||||
# Simple caching to keep keep from recompiling kernels
|
||||
if (kernel_id not in self.kernels.keys()):
|
||||
#Create define string
|
||||
define_string = "#define block_width " + str(block_width) + "\n"
|
||||
define_string += "#define block_height " + str(block_height) + "\n\n"
|
||||
|
||||
|
||||
kernel_string = define_string + '#include "' + fullpath + '"'
|
||||
self.kernels[kernel_id] = cuda_compiler.SourceModule(kernel_string, include_dirs=[module_path])
|
||||
|
||||
return self.kernels[kernel_id]
|
||||
|
||||
"""
|
||||
Clears the kernel cache (useful for debugging & development)
|
||||
"""
|
||||
def clear_kernel_cache(self):
|
||||
self.kernels = {}
|
||||
|
||||
|
||||
|
||||
|
||||
class Timer(object):
|
||||
def __init__(self, tag, verbose=True):
|
||||
self.verbose = verbose
|
||||
self.tag = tag
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.time()
|
||||
return self
|
||||
|
||||
def __exit__(self, *args):
|
||||
self.end = time.time()
|
||||
self.secs = self.end - self.start
|
||||
self.msecs = self.secs * 1000 # millisecs
|
||||
if self.verbose:
|
||||
print("=> " + self.tag + ' %f ms' % self.msecs)
|
||||
|
||||
|
||||
|
||||
@ -53,9 +112,9 @@ class CUDAArray2D:
|
||||
self.ny_halo = ny + 2*halo_y
|
||||
|
||||
#Make sure data is in proper format
|
||||
assert(np.issubdtype(data.dtype, np.float32), "Wrong datatype: %s" % str(data.dtype))
|
||||
assert(not np.isfortran(data), "Wrong datatype (Fortran, expected C)")
|
||||
assert(data.shape == (self.ny_halo, self.nx_halo), "Wrong data shape: %s" % str(data.shape))
|
||||
assert np.issubdtype(data.dtype, np.float32), "Wrong datatype: %s" % str(data.dtype)
|
||||
assert not np.isfortran(data), "Wrong datatype (Fortran, expected C)"
|
||||
assert data.shape == (self.ny_halo, self.nx_halo), "Wrong data shape: %s" % str(data.shape)
|
||||
|
||||
#Upload data to the device
|
||||
self.data = pycuda.gpuarray.to_gpu_async(data, stream=stream)
|
||||
|
@ -57,6 +57,7 @@ class FORCE:
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
context, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
dx, dy, dt, \
|
||||
@ -66,7 +67,7 @@ class FORCE:
|
||||
self.stream = cuda.Stream()
|
||||
|
||||
#Get kernels
|
||||
self.force_module = Common.get_kernel("FORCE_kernel.cu", block_width, block_height)
|
||||
self.force_module = context.get_kernel("FORCE_kernel.cu", block_width, block_height)
|
||||
self.force_kernel = self.force_module.get_function("FORCEKernel")
|
||||
self.force_kernel.prepare("iiffffPiPiPiPiPiPi")
|
||||
|
||||
|
@ -52,6 +52,7 @@ class HLL:
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
context, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
dx, dy, dt, \
|
||||
@ -61,7 +62,7 @@ class HLL:
|
||||
self.stream = cuda.Stream()
|
||||
|
||||
#Get kernels
|
||||
self.hll_module = Common.get_kernel("HLL_kernel.cu", block_width, block_height)
|
||||
self.hll_module = context.get_kernel("HLL_kernel.cu", block_width, block_height)
|
||||
self.hll_kernel = self.hll_module.get_function("HLLKernel")
|
||||
self.hll_kernel.prepare("iiffffPiPiPiPiPiPi")
|
||||
|
||||
|
@ -21,7 +21,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#Import packages we need
|
||||
import numpy as np
|
||||
import pyopencl as cl #OpenCL in Python
|
||||
|
||||
import pycuda.compiler as cuda_compiler
|
||||
import pycuda.gpuarray
|
||||
import pycuda.driver as cuda
|
||||
|
||||
from SWESimulators import Common
|
||||
|
||||
|
||||
@ -50,25 +54,28 @@ class HLL2:
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
cl_ctx, \
|
||||
context, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
dx, dy, dt, \
|
||||
g, \
|
||||
theta=1.8, \
|
||||
block_width=16, block_height=16):
|
||||
self.cl_ctx = cl_ctx
|
||||
|
||||
#Create an OpenCL command queue
|
||||
self.cl_queue = cl.CommandQueue(self.cl_ctx)
|
||||
#Create a CUDA stream
|
||||
self.stream = cuda.Stream()
|
||||
|
||||
#Get kernels
|
||||
self.swe_kernel = Common.get_kernel(self.cl_ctx, "HLL2_kernel.opencl", block_width, block_height)
|
||||
self.hll2_module = context.get_kernel("HLL2_kernel.cu", block_width, block_height)
|
||||
self.hll2_kernel = self.hll2_module.get_function("HLL2Kernel")
|
||||
self.hll2_kernel.prepare("iifffffiPiPiPiPiPiPi")
|
||||
|
||||
#Create data by uploading to device
|
||||
ghost_cells_x = 2
|
||||
ghost_cells_y = 2
|
||||
self.cl_data = Common.SWEDataArkawaA(self.cl_ctx, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0)
|
||||
self.data = Common.SWEDataArakawaA(self.stream, \
|
||||
nx, ny, \
|
||||
ghost_cells_x, ghost_cells_y, \
|
||||
h0, hu0, hv0)
|
||||
|
||||
#Save input parameters
|
||||
#Notice that we need to specify them in the correct dataformat for the
|
||||
@ -85,15 +92,15 @@ class HLL2:
|
||||
self.t = np.float32(0.0)
|
||||
|
||||
#Compute kernel launch parameters
|
||||
self.local_size = (block_width, block_height)
|
||||
self.local_size = (block_width, block_height, 1)
|
||||
self.global_size = ( \
|
||||
int(np.ceil(self.nx / float(self.local_size[0])) * self.local_size[0]), \
|
||||
int(np.ceil(self.ny / float(self.local_size[1])) * self.local_size[1]) \
|
||||
)
|
||||
int(np.ceil(self.nx / float(self.local_size[0]))), \
|
||||
int(np.ceil(self.ny / float(self.local_size[1]))) \
|
||||
)
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return "Harten-Lax-van Leer contact discontinuity"
|
||||
return "Harten-Lax-van Leer (2nd order)"
|
||||
|
||||
|
||||
"""
|
||||
@ -111,34 +118,34 @@ class HLL2:
|
||||
break
|
||||
|
||||
#Along X, then Y
|
||||
self.swe_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
|
||||
self.hll2_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
|
||||
self.nx, self.ny, \
|
||||
self.dx, self.dy, local_dt, \
|
||||
self.g, \
|
||||
self.theta, \
|
||||
np.int32(0), \
|
||||
self.cl_data.h0.data, self.cl_data.h0.pitch, \
|
||||
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
|
||||
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
|
||||
self.cl_data.h1.data, self.cl_data.h1.pitch, \
|
||||
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
|
||||
self.cl_data.hv1.data, self.cl_data.hv1.pitch)
|
||||
self.cl_data.swap()
|
||||
self.data.h0.data.gpudata, self.data.h0.pitch, \
|
||||
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
|
||||
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
|
||||
self.data.h1.data.gpudata, self.data.h1.pitch, \
|
||||
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
|
||||
self.data.hv1.data.gpudata, self.data.hv1.pitch)
|
||||
self.data.swap()
|
||||
|
||||
#Along Y, then X
|
||||
self.swe_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
|
||||
self.hll2_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
|
||||
self.nx, self.ny, \
|
||||
self.dx, self.dy, local_dt, \
|
||||
self.g, \
|
||||
self.theta, \
|
||||
np.int32(1), \
|
||||
self.cl_data.h0.data, self.cl_data.h0.pitch, \
|
||||
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
|
||||
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
|
||||
self.cl_data.h1.data, self.cl_data.h1.pitch, \
|
||||
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
|
||||
self.cl_data.hv1.data, self.cl_data.hv1.pitch)
|
||||
self.cl_data.swap()
|
||||
self.data.h0.data.gpudata, self.data.h0.pitch, \
|
||||
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
|
||||
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
|
||||
self.data.h1.data.gpudata, self.data.h1.pitch, \
|
||||
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
|
||||
self.data.hv1.data.gpudata, self.data.hv1.pitch)
|
||||
self.data.swap()
|
||||
|
||||
self.t += local_dt
|
||||
|
||||
@ -148,5 +155,5 @@ class HLL2:
|
||||
|
||||
|
||||
def download(self):
|
||||
return self.cl_data.download(self.cl_queue)
|
||||
return self.data.download(self.stream)
|
||||
|
||||
|
@ -18,7 +18,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.opencl"
|
||||
#include "common.cu"
|
||||
|
||||
|
||||
|
||||
@ -29,9 +29,10 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
void computeFluxF(__local float Q[3][block_height+4][block_width+4],
|
||||
__local float Qx[3][block_height+2][block_width+2],
|
||||
__local float F[3][block_height+1][block_width+1],
|
||||
__device__
|
||||
void computeFluxF(float Q[3][block_height+4][block_width+4],
|
||||
float Qx[3][block_height+2][block_width+2],
|
||||
float F[3][block_height+1][block_width+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = get_local_id(0);
|
||||
@ -43,19 +44,19 @@ void computeFluxF(__local float Q[3][block_height+4][block_width+4],
|
||||
const int k = i + 1;
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = (float3)(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = (float3)(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rl = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = (float3)(Q[0][l][k] - 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] - 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = (float3)(Q[0][l][k] + 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] + 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] + 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] - 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qx[0][j][i],
|
||||
Q[1][l][k] + 0.5f*Qx[1][j][i],
|
||||
Q[2][l][k] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
@ -79,9 +80,10 @@ void computeFluxF(__local float Q[3][block_height+4][block_width+4],
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
void computeFluxG(__local float Q[3][block_height+4][block_width+4],
|
||||
__local float Qy[3][block_height+2][block_width+2],
|
||||
__local float G[3][block_height+1][block_width+1],
|
||||
__device__
|
||||
void computeFluxG(float Q[3][block_height+4][block_width+4],
|
||||
float Qy[3][block_height+2][block_width+2],
|
||||
float G[3][block_height+1][block_width+1],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = get_local_id(0);
|
||||
@ -94,19 +96,19 @@ void computeFluxG(__local float Q[3][block_height+4][block_width+4],
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = (float3)(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = (float3)(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rl = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = (float3)(Q[0][l][k] - 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] - 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = (float3)(Q[0][l][k] + 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] + 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] + 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] - 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qy[0][j][i],
|
||||
Q[2][l][k] + 0.5f*Qy[2][j][i],
|
||||
Q[1][l][k] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
@ -131,7 +133,7 @@ void computeFluxG(__local float Q[3][block_height+4][block_width+4],
|
||||
|
||||
|
||||
|
||||
__kernel void swe_2D(
|
||||
__global__ void HLL2Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
@ -141,19 +143,19 @@ __kernel void swe_2D(
|
||||
int step_,
|
||||
|
||||
//Input h^n
|
||||
__global float* h0_ptr_, int h0_pitch_,
|
||||
__global float* hu0_ptr_, int hu0_pitch_,
|
||||
__global float* hv0_ptr_, int hv0_pitch_,
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
__global float* h1_ptr_, int h1_pitch_,
|
||||
__global float* hu1_ptr_, int hu1_pitch_,
|
||||
__global float* hv1_ptr_, int hv1_pitch_) {
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
//Shared memory variables
|
||||
__local float Q[3][block_height+4][block_width+4];
|
||||
__local float Qx[3][block_height+2][block_width+2];
|
||||
__local float F[3][block_height+1][block_width+1];
|
||||
__shared__ float Q[3][block_height+4][block_width+4];
|
||||
__shared__ float Qx[3][block_height+2][block_width+2];
|
||||
__shared__ float F[3][block_height+1][block_width+1];
|
||||
|
||||
|
||||
|
||||
@ -163,55 +165,55 @@ __kernel void swe_2D(
|
||||
hu0_ptr_, hu0_pitch_,
|
||||
hv0_ptr_, hv0_pitch_,
|
||||
Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
evolveF2(Q, F, nx_, ny_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
evolveG2(Q, F, nx_, ny_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY(Q, Qx, theta_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
evolveG2(Q, F, nx_, ny_, dy_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Set boundary conditions
|
||||
noFlowBoundary2(Q, nx_, ny_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
evolveF2(Q, F, nx_, ny_, dx_, dt_);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
@ -53,6 +53,7 @@ class LxF:
|
||||
g: Gravitational accelleration (9.81 m/s^2)
|
||||
"""
|
||||
def __init__(self, \
|
||||
context, \
|
||||
h0, hu0, hv0, \
|
||||
nx, ny, \
|
||||
dx, dy, dt, \
|
||||
@ -62,7 +63,7 @@ class LxF:
|
||||
self.stream = None #cuda.Stream()
|
||||
|
||||
#Get kernels
|
||||
self.lxf_module = Common.get_kernel("LxF_kernel.cu", block_width, block_height)
|
||||
self.lxf_module = context.get_kernel("LxF_kernel.cu", block_width, block_height)
|
||||
self.lxf_kernel = self.lxf_module.get_function("LxFKernel")
|
||||
self.lxf_kernel.prepare("iiffffPiPiPiPiPiPi")
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user