FiniteVolumeGPU/SWESimulators/CDKLM16_kernel.opencl
2018-06-14 10:35:01 +02:00

440 lines
14 KiB
Plaintext

/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.opencl"
float3 CDKLM16_F_func(const float3 Q, const float g) {
float3 F;
F.x = Q.x*Q.y; //h*u
F.y = Q.x*Q.y*Q.y + 0.5f*g*Q.x*Q.x; //h*u*u + 0.5f*g*h*h;
F.z = Q.x*Q.y*Q.z; //h*u*v;
return F;
}
/**
* Note that the input vectors are (h, u, v), thus not the regular
* (h, hu, hv)
*/
float3 CDKLM16_flux(const float3 Qm, float3 Qp, const float g) {
const float3 Fp = CDKLM16_F_func(Qp, g);
const float up = Qp.y; // u
const float cp = sqrt(g*Qp.x); // sqrt(g*h)
const float3 Fm = CDKLM16_F_func(Qm, g);
const float um = Qm.y; // u
const float cm = sqrt(g*Qm.x); // sqrt(g*h)
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
float3 F;
F.x = ((ap*Fm.x - am*Fp.x) + ap*am*(Qp.x-Qm.x))/(ap-am);
F.y = ((ap*Fm.y - am*Fp.y) + ap*am*(Qp.y-Qm.y))/(ap-am);
F.z = (Qm.y + Qp.y > 0) ? Fm.z : Fp.z; //Upwinding to be consistent
return F;
}
__kernel void swe_2D(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
float f_, //< Coriolis coefficient
float r_, //< Bottom friction coefficient
int step_,
//Input h^n
__global float* h0_ptr_, int h0_pitch_,
__global float* hu0_ptr_, int hu0_pitch_,
__global float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
__global float* h1_ptr_, int h1_pitch_,
__global float* hu1_ptr_, int hu1_pitch_,
__global float* hv1_ptr_, int hv1_pitch_,
//Wind stress parameters
int wind_stress_type_,
float tau0_, float rho_, float alpha_, float xm_, float Rc_,
float x0_, float y0_,
float u0_, float v0_,
float t_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of block within domain
const int bx = get_local_size(0) * get_group_id(0);
const int by = get_local_size(1) * get_group_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 3; //Skip global ghost cells, i.e., +3
const int tj = get_global_id(1) + 3;
// Our physical variables
__local float R[3][block_height+6][block_width+6];
// Our reconstruction variables
__local float Q[4][block_height+4][block_width+4];
__local float Qx[4][block_height][block_width+2];
__local float Qy[4][block_height+2][block_width];
// Our fluxes
__local float F[3][block_height][block_width+1];
__local float G[3][block_height+1][block_width];
//Read into shared memory
for (int j=ty; j<block_height+6; j+=get_local_size(1)) {
const int l = clamp(by + j, 0, ny_+5); // Out of bounds
//Compute the pointer to current row in the arrays
__global float* const h_row = (__global float*) ((__global char*) h0_ptr_ + h0_pitch_*l);
__global float* const hu_row = (__global float*) ((__global char*) hu0_ptr_ + hu0_pitch_*l);
__global float* const hv_row = (__global float*) ((__global char*) hv0_ptr_ + hv0_pitch_*l);
for (int i=tx; i<block_width+6; i+=get_local_size(0)) {
const int k = clamp(bx + i, 0, nx_+5); // Out of bounds
R[0][j][i] = h_row[k];
R[1][j][i] = hu_row[k];
R[2][j][i] = hv_row[k];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
//Fix boundary conditions
{
const int i = tx + 3; //Skip local ghost cells, i.e., +3
const int j = ty + 3;
if (ti == 3) {
R[0][j][i-1] = R[0][j][i];
R[1][j][i-1] = -R[1][j][i];
R[2][j][i-1] = R[2][j][i];
R[0][j][i-2] = R[0][j][i+1];
R[1][j][i-2] = -R[1][j][i+1];
R[2][j][i-2] = R[2][j][i+1];
R[0][j][i-3] = R[0][j][i+2];
R[1][j][i-3] = -R[1][j][i+2];
R[2][j][i-3] = R[2][j][i+2];
}
if (ti == nx_+2) {
R[0][j][i+1] = R[0][j][i];
R[1][j][i+1] = -R[1][j][i];
R[2][j][i+1] = R[2][j][i];
R[0][j][i+2] = R[0][j][i-1];
R[1][j][i+2] = -R[1][j][i-1];
R[2][j][i+2] = R[2][j][i-1];
R[0][j][i+3] = R[0][j][i-2];
R[1][j][i+3] = -R[1][j][i-2];
R[2][j][i+3] = R[2][j][i-2];
}
if (tj == 3) {
R[0][j-1][i] = R[0][j][i];
R[1][j-1][i] = R[1][j][i];
R[2][j-1][i] = -R[2][j][i];
R[0][j-2][i] = R[0][j+1][i];
R[1][j-2][i] = R[1][j+1][i];
R[2][j-2][i] = -R[2][j+1][i];
R[0][j-3][i] = R[0][j+2][i];
R[1][j-3][i] = R[1][j+2][i];
R[2][j-3][i] = -R[2][j+2][i];
}
if (tj == ny_+2) {
R[0][j+1][i] = R[0][j][i];
R[1][j+1][i] = R[1][j][i];
R[2][j+1][i] = -R[2][j][i];
R[0][j+2][i] = R[0][j-1][i];
R[1][j+2][i] = R[1][j-1][i];
R[2][j+2][i] = -R[2][j-1][i];
R[0][j+3][i] = R[0][j-2][i];
R[1][j+3][i] = R[1][j-2][i];
R[2][j+3][i] = -R[2][j-2][i];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
//Create our "steady state" reconstruction variables (u, v, K, L)
for (int j=ty; j<block_height+4; j+=get_local_size(1)) {
const int l = j + 1; //Skip one "ghost cell row" of Q, going from 6x6 to 4x4 "halo"
for (int i=tx; i<block_width+4; i+=get_local_size(0)) {
const int k = i + 1;
const float h = R[0][l][k];
const float u = R[1][l][k] / h;
const float v = R[2][l][k] / h;
const float B = 0.0f;
const float U = 0.25f * f_/g_ * (1.0*R[1][l+1][k]/R[0][l+1][k] + 2.0f*u + 1.0f*R[1][l-1][k]/R[0][l-1][k]);
const float V = 0.25f * f_/g_ * (1.0*R[2][l][k+1]/R[0][l][k+1] + 2.0f*v + 1.0f*R[2][l][k-1]/R[0][l][k-1]);
//const float U = f_/g_ * u;
//const float V = f_/g_ * v;
const float K = h + B - V;
const float L = h + B + U;
Q[0][j][i] = u;
Q[1][j][i] = v;
Q[2][j][i] = K;
Q[3][j][i] = L;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
//Reconstruct slopes along x axis
for (int j=ty; j<block_height; j+=get_local_size(1)) {
const int l = j + 2; //Skip ghost cells
for (int i=tx; i<block_width+2; i+=get_local_size(0)) {
const int k = i + 1;
for (int p=0; p<4; ++p) {
Qx[p][j][i] = minmodSlope(Q[p][l][k-1], Q[p][l][k], Q[p][l][k+1], theta_);
}
}
}
//Reconstruct slopes along y axis
for (int j=ty; j<block_height+2; j+=get_local_size(1)) {
const int l = j + 1;
for (int i=tx; i<block_width; i+=get_local_size(0)) {
const int k = i + 2; //Skip ghost cells
for (int p=0; p<4; ++p) {
Qy[p][j][i] = minmodSlope(Q[p][l-1][k], Q[p][l][k], Q[p][l+1][k], theta_);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
//Compute fluxes along the x axis
for (int j=ty; j<block_height; j+=get_local_size(1)) {
const int l = j + 2; //Skip ghost cells (be consistent with reconstruction offsets)
for (int i=tx; i<block_width+1; i+=get_local_size(0)) {
const int k = i + 1;
// R=(u, v, K, L) reconstructed at a cell interface from the right (p) and left (m)
const float4 Rp = (float4)(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1],
Q[3][l][k+1] - 0.5f*Qx[3][j][i+1]);
const float4 Rm = (float4)(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
Q[2][l][k ] + 0.5f*Qx[2][j][i ],
Q[3][l][k ] + 0.5f*Qx[3][j][i ]);
// Variables to reconstruct h from u, v, K, L
const float vp = Q[1][l][k+1];
const float vm = Q[1][l][k ];
const float V = 0.5f * f_/g_ * (vp + vm);
const float B = 0.0f;
// Reconstruct h = K/g + V - B
const float hp = Rp.z + V - B;
const float hm = Rm.z + V - B;
// Our flux variables Q=(h, u, v)
const float3 Qp = (float3)(hp, Rp.x, Rp.y);
const float3 Qm = (float3)(hm, Rm.x, Rm.y);
// Computed flux
const float3 flux = CDKLM16_flux(Qm, Qp, g_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
//Compute fluxes along the y axis
for (int j=ty; j<block_height+1; j+=get_local_size(1)) {
const int l = j + 1;
for (int i=tx; i<block_width; i+=get_local_size(0)) {
const int k = i + 2; //Skip ghost cells
// Q at interface from the right and left
const float4 Rp = (float4)(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[3][l+1][k] - 0.5f*Qy[3][j+1][i]);
const float4 Rm = (float4)(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
Q[1][l ][k] + 0.5f*Qy[1][j ][i],
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
Q[3][l ][k] + 0.5f*Qy[3][j ][i]);
// Variables to reconstruct h from u, v, K, L
const float up = Q[0][l+1][k];
const float um = Q[0][l ][k];
const float U = 0.5f * f_/g_ * (up + um);
const float B = 0.0f;
// Reconstruct h = L/g - U - B
const float hp = Rp.w - U - B;
const float hm = Rm.w - U - B;
// Our flux variables Q=(h, v, u)
// Note that we swap u and v
const float3 Qp = (float3)(hp, Rp.y, Rp.x);
const float3 Qm = (float3)(hm, Rm.y, Rm.x);
// Computed flux
// Note that we swap back u and v
const float3 flux = CDKLM16_flux(Qm, Qp, g_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
//Sum fluxes and advance in time for all internal cells
if (ti > 2 && ti < nx_+3 && tj > 2 && tj < ny_+3) {
const int i = tx + 3; //Skip local ghost cells, i.e., +2
const int j = ty + 3;
const float X = windStressX(
wind_stress_type_,
dx_, dy_, dt_,
tau0_, rho_, alpha_, xm_, Rc_,
x0_, y0_,
u0_, v0_,
t_);
const float Y = windStressY(
wind_stress_type_,
dx_, dy_, dt_,
tau0_, rho_, alpha_, xm_, Rc_,
x0_, y0_,
u0_, v0_,
t_);
const float h1 = R[0][j][i] + (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
const float hu1 = R[1][j][i] + (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_
+ dt_*X - dt_*f_*R[2][j][i];
const float hv1 = R[2][j][i] + (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_
+ dt_*Y + dt_*f_*R[1][j][i];
__global float* const h_row = (__global float*) ((__global char*) h1_ptr_ + h1_pitch_*tj);
__global float* const hu_row = (__global float*) ((__global char*) hu1_ptr_ + hu1_pitch_*tj);
__global float* const hv_row = (__global float*) ((__global char*) hv1_ptr_ + hv1_pitch_*tj);
const float C = 2.0f*r_*dt_/R[0][j][i];
if (step_ == 0) {
//First step of RK2 ODE integrator
h_row[ti] = h1;
hu_row[ti] = hu1 / (1.0f + C);
hv_row[ti] = hv1 / (1.0f + C);
}
else if (step_ == 1) {
//Second step of RK2 ODE integrator
//First read Q^n
const float h_a = h_row[ti];
const float hu_a = hu_row[ti];
const float hv_a = hv_row[ti];
//Compute Q^n+1
const float h_b = 0.5f*(h_a + h1);
const float hu_b = 0.5f*(hu_a + hu1);
const float hv_b = 0.5f*(hv_a + hv1);
//Write to main memory
h_row[ti] = h_b;
hu_row[ti] = hu_b / (1.0f + 0.5f*C);
hv_row[ti] = hv_b / (1.0f + 0.5f*C);
}
}
}