/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "common.opencl"
float3 CDKLM16_F_func(const float3 Q, const float g) {
float3 F;
F.x = Q.x*Q.y; //h*u
F.y = Q.x*Q.y*Q.y + 0.5f*g*Q.x*Q.x; //h*u*u + 0.5f*g*h*h;
F.z = Q.x*Q.y*Q.z; //h*u*v;
return F;
}
/**
* Note that the input vectors are (h, u, v), thus not the regular
* (h, hu, hv)
*/
float3 CDKLM16_flux(const float3 Qm, float3 Qp, const float g) {
const float3 Fp = CDKLM16_F_func(Qp, g);
const float up = Qp.y; // u
const float cp = sqrt(g*Qp.x); // sqrt(g*h)
const float3 Fm = CDKLM16_F_func(Qm, g);
const float um = Qm.y; // u
const float cm = sqrt(g*Qm.x); // sqrt(g*h)
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
float3 F;
F.x = ((ap*Fm.x - am*Fp.x) + ap*am*(Qp.x-Qm.x))/(ap-am);
F.y = ((ap*Fm.y - am*Fp.y) + ap*am*(Qp.y-Qm.y))/(ap-am);
F.z = (Qm.y + Qp.y > 0) ? Fm.z : Fp.z; //Upwinding to be consistent
return F;
}
__kernel void swe_2D(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
float f_, //< Coriolis coefficient
float r_, //< Bottom friction coefficient
int step_,
//Input h^n
__global float* h0_ptr_, int h0_pitch_,
__global float* hu0_ptr_, int hu0_pitch_,
__global float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
__global float* h1_ptr_, int h1_pitch_,
__global float* hu1_ptr_, int hu1_pitch_,
__global float* hv1_ptr_, int hv1_pitch_,
//Wind stress parameters
int wind_stress_type_,
float tau0_, float rho_, float alpha_, float xm_, float Rc_,
float x0_, float y0_,
float u0_, float v0_,
float t_) {
//Index of thread within block
const int tx = get_local_id(0);
const int ty = get_local_id(1);
//Index of block within domain
const int bx = get_local_size(0) * get_group_id(0);
const int by = get_local_size(1) * get_group_id(1);
//Index of cell within domain
const int ti = get_global_id(0) + 3; //Skip global ghost cells, i.e., +3
const int tj = get_global_id(1) + 3;
// Our physical variables
__local float R[3][block_height+6][block_width+6];
// Our reconstruction variables
__local float Q[4][block_height+4][block_width+4];
__local float Qx[4][block_height][block_width+2];
__local float Qy[4][block_height+2][block_width];
// Our fluxes
__local float F[3][block_height][block_width+1];
__local float G[3][block_height+1][block_width];
//Read into shared memory
for (int j=ty; j 2 && ti < nx_+3 && tj > 2 && tj < ny_+3) {
const int i = tx + 3; //Skip local ghost cells, i.e., +2
const int j = ty + 3;
const float X = windStressX(
wind_stress_type_,
dx_, dy_, dt_,
tau0_, rho_, alpha_, xm_, Rc_,
x0_, y0_,
u0_, v0_,
t_);
const float Y = windStressY(
wind_stress_type_,
dx_, dy_, dt_,
tau0_, rho_, alpha_, xm_, Rc_,
x0_, y0_,
u0_, v0_,
t_);
const float h1 = R[0][j][i] + (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
const float hu1 = R[1][j][i] + (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_
+ dt_*X - dt_*f_*R[2][j][i];
const float hv1 = R[2][j][i] + (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_
+ dt_*Y + dt_*f_*R[1][j][i];
__global float* const h_row = (__global float*) ((__global char*) h1_ptr_ + h1_pitch_*tj);
__global float* const hu_row = (__global float*) ((__global char*) hu1_ptr_ + hu1_pitch_*tj);
__global float* const hv_row = (__global float*) ((__global char*) hv1_ptr_ + hv1_pitch_*tj);
const float C = 2.0f*r_*dt_/R[0][j][i];
if (step_ == 0) {
//First step of RK2 ODE integrator
h_row[ti] = h1;
hu_row[ti] = hu1 / (1.0f + C);
hv_row[ti] = hv1 / (1.0f + C);
}
else if (step_ == 1) {
//Second step of RK2 ODE integrator
//First read Q^n
const float h_a = h_row[ti];
const float hu_a = hu_row[ti];
const float hv_a = hv_row[ti];
//Compute Q^n+1
const float h_b = 0.5f*(h_a + h1);
const float hu_b = 0.5f*(hu_a + hu1);
const float hv_b = 0.5f*(hv_a + hv1);
//Write to main memory
h_row[ti] = h_b;
hu_row[ti] = hu_b / (1.0f + 0.5f*C);
hv_row[ti] = hv_b / (1.0f + 0.5f*C);
}
}
}