2022-04-07 14:23:02 +00:00
2022-04-07 09:07:20 +00:00
2018-10-31 13:02:21 +01:00
2021-05-05 15:23:16 +00:00
2018-10-31 13:02:21 +01:00
2019-11-26 07:11:24 +00:00
2022-01-24 19:57:58 +01:00
2018-06-01 12:34:57 +02:00
2019-08-12 14:09:56 +02:00
2022-04-07 09:07:20 +00:00
2022-04-01 13:42:56 +00:00
2021-08-06 15:05:19 +00:00
2022-04-07 13:52:16 +02:00
2022-01-24 19:56:07 +01:00
2021-08-06 15:05:19 +00:00
2018-11-28 15:28:35 +01:00

ShallowWaterGPU

Systems

Connection and run details for all potential benchmark systems.

OsloMet 2 x Quadro RTX 6000 (VPN necessary)

Connect:
ssh -AX ip-from-webpage

For Jupyter Notebook:
Access https://seymour.cs.oslomet.no in browser and open terminal (one time operation) conda env create -f conda_environment.yml
conda activate ShallowWaterGPU / choose the "conda:ShallowWaterGPU" kernel in the notebook

Simula DGX-2

Connect:
ssh -YAC2 dnat.simula.no -p 60441 (and then ssh -Y g001 for direct login to DGX-2 box)

Example job script:
dgx-2-test.job

Submit:
module use /cm/shared/ex3-modules/latest/modulefiles # Latest ex3-modules
module load slurm/20.02.7 # To load slurm module
sbatch dgx-2-test.job

PPI 4 x P100 (VPN necessary)

Connect:
ssh -AX gpu-01.ppi.met.no
ssh -AX gpu-02.ppi.met.no
ssh -AX gpu-03.ppi.met.no
ssh -AX gpu-04.ppi.met.no

Submit:
run_script_ppi.sh

Saga 8 nodes with 4 x P100

Connect:
ssh -AX saga.sigma2.no

Example job script:
saga-dev.job

Submit:
sbatch saga-dev.job

Granada: 2 x RTX 2080 + 1 x RTX "new" + X x P100

Description
No description provided
Readme GPL-3.0 165 MiB
Languages
Jupyter Notebook 98.5%
Python 0.9%
Cuda 0.3%
C++ 0.2%
Shell 0.1%