André R. Brodtkorb 2d8858e7e6 Refactoring
2018-10-31 15:34:54 +01:00

315 lines
8.2 KiB
C++

/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/**
* Float3 operators
*/
inline __device__ float3 operator*(const float a, const float3 b) {
return make_float3(a*b.x, a*b.y, a*b.z);
}
inline __device__ float3 operator/(const float3 a, const float b) {
return make_float3(a.x/b, a.y/b, a.z/b);
}
inline __device__ float3 operator-(const float3 a, const float3 b) {
return make_float3(a.x-b.x, a.y-b.y, a.z-b.z);
}
inline __device__ float3 operator+(const float3 a, const float3 b) {
return make_float3(a.x+b.x, a.y+b.y, a.z+b.z);
}
/**
* Float4 operators
*/
inline __device__ float4 operator*(const float a, const float4 b) {
return make_float4(a*b.x, a*b.y, a*b.z, a*b.w);
}
inline __device__ float4 operator/(const float4 a, const float b) {
return make_float4(a.x/b, a.y/b, a.z/b, a.w/b);
}
inline __device__ float4 operator-(const float4 a, const float4 b) {
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
inline __device__ float4 operator+(const float4 a, const float4 b) {
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
inline __device__ __host__ float clamp(const float f, const float a, const float b) {
return fmaxf(a, fminf(f, b));
}
inline __device__ __host__ int clamp(const int f, const int a, const int b) {
return (f < b) ? ( (f > a) ? f : a) : b;
}
__device__ float desingularize(float x_, float eps_) {
return copysign(1.0f, x_)*fmaxf(fabsf(x_), fminf(x_*x_/(2.0f*eps_)+0.5f*eps_, eps_));
}
/**
* Reads a block of data with ghost cells
*/
template<int block_width, int block_height, int ghost_cells>
inline __device__ void readBlock(float* ptr_, int pitch_,
float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells],
const int max_x_, const int max_y_) {
//Index of block within domain
const int bx = blockDim.x * blockIdx.x;
const int by = blockDim.y * blockIdx.y;
//Read into shared memory
//Loop over all variables
for (int j=threadIdx.y; j<block_height+2*ghost_cells; j+=block_height) {
const int l = min(by + j, max_y_-1);
float* row = (float*) ((char*) ptr_ + pitch_*l);
for (int i=threadIdx.x; i<block_width+2*ghost_cells; i+=block_width) {
const int k = min(bx + i, max_x_-1);
shmem[j][i] = row[k];
}
}
}
/**
* Writes a block of data to global memory for the shallow water equations.
*/
template<int block_width, int block_height, int ghost_cells>
inline __device__ void writeBlock(float* ptr_, int pitch_,
float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells],
const int width, const int height) {
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells;
const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells;
//Only write internal cells
if (ti < width+ghost_cells && tj < height+ghost_cells) {
//Index of thread within block
const int tx = threadIdx.x + ghost_cells;
const int ty = threadIdx.y + ghost_cells;
float* const row = (float*) ((char*) ptr_ + pitch_*tj);
row[ti] = shmem[ty][tx];
}
}
template<int block_width, int block_height, int ghost_cells, int scale_east_west=1, int scale_north_south=1>
__device__ void noFlowBoundary(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) {
const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells;
const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells;
const int i = threadIdx.x + ghost_cells;
const int j = threadIdx.y + ghost_cells;
// West boundary
if (ti == ghost_cells) {
Q[j][i-1] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 2 && ti == ghost_cells + 1) {
Q[j][i-3] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 3 && ti == ghost_cells + 2) {
Q[j][i-5] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 4 && ti == ghost_cells + 3) {
Q[j][i-7] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 5 && ti == ghost_cells + 4) {
Q[j][i-9] = scale_east_west*Q[j][i];
}
// East boundary
if (ti == nx_ + ghost_cells - 1) {
Q[j][i+1] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 2 && ti == nx_ + ghost_cells - 2) {
Q[j][i+3] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 3) {
Q[j][i+5] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 4) {
Q[j][i+7] = scale_east_west*Q[j][i];
}
if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 5) {
Q[j][i+9] = scale_east_west*Q[j][i];
}
// South boundary
if (tj == ghost_cells) {
Q[j-1][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 2 && tj == ghost_cells + 1) {
Q[j-3][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 3 && tj == ghost_cells + 2) {
Q[j-5][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 4 && tj == ghost_cells + 3) {
Q[j-7][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 5 && tj == ghost_cells + 4) {
Q[j-9][i] = scale_north_south*Q[j][i];
}
// North boundary
if (tj == ny_ + ghost_cells - 1) {
Q[j+1][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 2 && tj == ny_ + ghost_cells - 2) {
Q[j+3][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 3) {
Q[j+5][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 4) {
Q[j+7][i] = scale_north_south*Q[j][i];
}
if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 5) {
Q[j+9][i] = scale_north_south*Q[j][i];
}
}
template<int block_width, int block_height, int ghost_cells>
__device__ void evolveF(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells],
float F[block_height+1][block_width+1],
const float dx_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int i = tx + ghost_cells; //Skip local ghost cells
const int j = ty + ghost_cells;
//Index of cell within domain
//const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells; //Skip global ghost cells, i.e., +1
//const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells;
//if (ti > ghost_cells-1 && ti < nx_+ghost_cells && tj > ghost_cells-1 && tj < ny_+ghost_cells) {
Q[j][i] = Q[j][i] + (F[ty][tx] - F[ty][tx+1]) * dt_ / dx_;
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
template<int block_width, int block_height, int ghost_cells>
__device__ void evolveG(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells],
float G[block_height+1][block_width+1],
const float dy_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int i = tx + ghost_cells; //Skip local ghost cells, i.e., +1
const int j = ty + ghost_cells;
Q[j][i] = Q[j][i] + (G[ty][tx] - G[ty+1][tx]) * dt_ / dy_;
}