/* This OpenCL kernel implements the Kurganov-Petrova numerical scheme for the shallow water equations, described in A. Kurganov & Guergana Petrova A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System Communications in Mathematical Sciences, 5 (2007), 133-160. Copyright (C) 2016 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once /** * Float3 operators */ inline __device__ float3 operator*(const float a, const float3 b) { return make_float3(a*b.x, a*b.y, a*b.z); } inline __device__ float3 operator/(const float3 a, const float b) { return make_float3(a.x/b, a.y/b, a.z/b); } inline __device__ float3 operator-(const float3 a, const float3 b) { return make_float3(a.x-b.x, a.y-b.y, a.z-b.z); } inline __device__ float3 operator+(const float3 a, const float3 b) { return make_float3(a.x+b.x, a.y+b.y, a.z+b.z); } /** * Float4 operators */ inline __device__ float4 operator*(const float a, const float4 b) { return make_float4(a*b.x, a*b.y, a*b.z, a*b.w); } inline __device__ float4 operator/(const float4 a, const float b) { return make_float4(a.x/b, a.y/b, a.z/b, a.w/b); } inline __device__ float4 operator-(const float4 a, const float4 b) { return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); } inline __device__ float4 operator+(const float4 a, const float4 b) { return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } inline __device__ __host__ float clamp(const float f, const float a, const float b) { return fmaxf(a, fminf(f, b)); } inline __device__ __host__ int clamp(const int f, const int a, const int b) { return (f < b) ? ( (f > a) ? f : a) : b; } __device__ float desingularize(float x_, float eps_) { return copysign(1.0f, x_)*fmaxf(fabsf(x_), fminf(x_*x_/(2.0f*eps_)+0.5f*eps_, eps_)); } /** * Reads a block of data with ghost cells */ template inline __device__ void readBlock(float* ptr_, int pitch_, float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells], const int max_x_, const int max_y_) { //Index of block within domain const int bx = blockDim.x * blockIdx.x; const int by = blockDim.y * blockIdx.y; //Read into shared memory //Loop over all variables for (int j=threadIdx.y; j inline __device__ void writeBlock(float* ptr_, int pitch_, float shmem[block_height+2*ghost_cells][block_width+2*ghost_cells], const int width, const int height) { //Index of cell within domain const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells; const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells; //Only write internal cells if (ti < width+ghost_cells && tj < height+ghost_cells) { //Index of thread within block const int tx = threadIdx.x + ghost_cells; const int ty = threadIdx.y + ghost_cells; float* const row = (float*) ((char*) ptr_ + pitch_*tj); row[ti] = shmem[ty][tx]; } } template __device__ void noFlowBoundary(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], const int nx_, const int ny_) { const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells; const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells; const int i = threadIdx.x + ghost_cells; const int j = threadIdx.y + ghost_cells; // West boundary if (ti == ghost_cells) { Q[j][i-1] = scale_east_west*Q[j][i]; } if (ghost_cells >= 2 && ti == ghost_cells + 1) { Q[j][i-3] = scale_east_west*Q[j][i]; } if (ghost_cells >= 3 && ti == ghost_cells + 2) { Q[j][i-5] = scale_east_west*Q[j][i]; } if (ghost_cells >= 4 && ti == ghost_cells + 3) { Q[j][i-7] = scale_east_west*Q[j][i]; } if (ghost_cells >= 5 && ti == ghost_cells + 4) { Q[j][i-9] = scale_east_west*Q[j][i]; } // East boundary if (ti == nx_ + ghost_cells - 1) { Q[j][i+1] = scale_east_west*Q[j][i]; } if (ghost_cells >= 2 && ti == nx_ + ghost_cells - 2) { Q[j][i+3] = scale_east_west*Q[j][i]; } if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 3) { Q[j][i+5] = scale_east_west*Q[j][i]; } if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 4) { Q[j][i+7] = scale_east_west*Q[j][i]; } if (ghost_cells >= 3 && ti == nx_ + ghost_cells - 5) { Q[j][i+9] = scale_east_west*Q[j][i]; } // South boundary if (tj == ghost_cells) { Q[j-1][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 2 && tj == ghost_cells + 1) { Q[j-3][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 3 && tj == ghost_cells + 2) { Q[j-5][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 4 && tj == ghost_cells + 3) { Q[j-7][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 5 && tj == ghost_cells + 4) { Q[j-9][i] = scale_north_south*Q[j][i]; } // North boundary if (tj == ny_ + ghost_cells - 1) { Q[j+1][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 2 && tj == ny_ + ghost_cells - 2) { Q[j+3][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 3) { Q[j+5][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 4) { Q[j+7][i] = scale_north_south*Q[j][i]; } if (ghost_cells >= 3 && tj == ny_ + ghost_cells - 5) { Q[j+9][i] = scale_north_south*Q[j][i]; } } template __device__ void evolveF(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], float F[block_height+1][block_width+1], const float dx_, const float dt_) { //Index of thread within block const int tx = threadIdx.x; const int ty = threadIdx.y; const int i = tx + ghost_cells; //Skip local ghost cells const int j = ty + ghost_cells; //Index of cell within domain //const int ti = blockDim.x*blockIdx.x + threadIdx.x + ghost_cells; //Skip global ghost cells, i.e., +1 //const int tj = blockDim.y*blockIdx.y + threadIdx.y + ghost_cells; //if (ti > ghost_cells-1 && ti < nx_+ghost_cells && tj > ghost_cells-1 && tj < ny_+ghost_cells) { Q[j][i] = Q[j][i] + (F[ty][tx] - F[ty][tx+1]) * dt_ / dx_; } /** * Evolves the solution in time along the y axis (dimensional splitting) */ template __device__ void evolveG(float Q[block_height+2*ghost_cells][block_width+2*ghost_cells], float G[block_height+1][block_width+1], const float dy_, const float dt_) { //Index of thread within block const int tx = threadIdx.x; const int ty = threadIdx.y; const int i = tx + ghost_cells; //Skip local ghost cells, i.e., +1 const int j = ty + ghost_cells; Q[j][i] = Q[j][i] + (G[ty][tx] - G[ty+1][tx]) * dt_ / dy_; }