Fixed KP07 dimensionally split

This commit is contained in:
André R. Brodtkorb
2018-07-25 16:12:23 +02:00
parent cbb1bdb839
commit d94daeae7e
3 changed files with 148 additions and 133 deletions

File diff suppressed because one or more lines are too long

View File

@@ -26,7 +26,11 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#Import packages we need
import numpy as np
import pyopencl as cl #OpenCL in Python
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
import pycuda.driver as cuda
from SWESimulators import Common
@@ -51,25 +55,25 @@ class KP07_dimsplit:
g: Gravitational accelleration (9.81 m/s^2)
"""
def __init__(self, \
cl_ctx, \
context, \
h0, hu0, hv0, \
nx, ny, \
dx, dy, dt, \
g, \
theta=1.3, \
block_width=16, block_height=16):
self.cl_ctx = cl_ctx
#Create an OpenCL command queue
self.cl_queue = cl.CommandQueue(self.cl_ctx)
#Create a CUDA stream
self.stream = cuda.Stream()
#Get kernels
self.swe_kernel = Common.get_kernel(self.cl_ctx, "KP07_dimsplit_kernel.opencl", block_width, block_height)
self.kp07_dimsplit_module = context.get_kernel("KP07_dimsplit_kernel.cu", block_width, block_height)
self.kp07_dimsplit_kernel = self.kp07_dimsplit_module.get_function("KP07DimsplitKernel")
self.kp07_dimsplit_kernel.prepare("iifffffiPiPiPiPiPiPi")
#Create data by uploading to device
ghost_cells_x = 2
ghost_cells_y = 2
self.cl_data = Common.SWEDataArkawaA(self.cl_ctx, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0)
self.data = Common.SWEDataArakawaA(self.stream, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0)
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
@@ -86,15 +90,15 @@ class KP07_dimsplit:
self.t = np.float32(0.0)
#Compute kernel launch parameters
self.local_size = (block_width, block_height)
self.local_size = (block_width, block_height, 1)
self.global_size = ( \
int(np.ceil(self.nx / float(self.local_size[0])) * self.local_size[0]), \
int(np.ceil(self.ny / float(self.local_size[1])) * self.local_size[1]) \
int(np.ceil(self.nx / float(self.local_size[0]))), \
int(np.ceil(self.ny / float(self.local_size[1]))) \
)
def __str__(self):
return "Kurganov-Petrova dimensionally split"
return "Kurganov-Petrova 2007 dimensionally split"
"""
@@ -113,34 +117,34 @@ class KP07_dimsplit:
break
#Along X, then Y
self.swe_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
self.kp07_dimsplit_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
np.int32(0), \
self.cl_data.h0.data, self.cl_data.h0.pitch, \
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
self.cl_data.h1.data, self.cl_data.h1.pitch, \
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
self.cl_data.hv1.data, self.cl_data.hv1.pitch)
self.cl_data.swap()
self.data.h0.data.gpudata, self.data.h0.pitch, \
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
self.data.h1.data.gpudata, self.data.h1.pitch, \
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
self.data.hv1.data.gpudata, self.data.hv1.pitch)
self.data.swap()
#Along Y, then X
self.swe_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
self.kp07_dimsplit_kernel.prepared_async_call(self.global_size, self.local_size, self.stream, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
np.int32(1), \
self.cl_data.h0.data, self.cl_data.h0.pitch, \
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
self.cl_data.h1.data, self.cl_data.h1.pitch, \
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
self.cl_data.hv1.data, self.cl_data.hv1.pitch)
self.cl_data.swap()
self.data.h0.data.gpudata, self.data.h0.pitch, \
self.data.hu0.data.gpudata, self.data.hu0.pitch, \
self.data.hv0.data.gpudata, self.data.hv0.pitch, \
self.data.h1.data.gpudata, self.data.h1.pitch, \
self.data.hu1.data.gpudata, self.data.hu1.pitch, \
self.data.hv1.data.gpudata, self.data.hv1.pitch)
self.data.swap()
self.t += 2.0*local_dt
@@ -151,5 +155,5 @@ class KP07_dimsplit:
def download(self):
return self.cl_data.download(self.cl_queue)
return self.data.download(self.stream)

View File

@@ -24,13 +24,13 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "common.opencl"
#include "common.cu"
void computeFluxF(__local float Q[3][block_height+4][block_width+4],
__local float Qx[3][block_height+2][block_width+2],
__local float F[3][block_height+1][block_width+1],
__device__
void computeFluxF(float Q[3][block_height+4][block_width+4],
float Qx[3][block_height+2][block_width+2],
float F[3][block_height+1][block_width+1],
const float g_, const float dx_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
@@ -42,19 +42,19 @@ void computeFluxF(__local float Q[3][block_height+4][block_width+4],
const int k = i + 1;
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = (float3)(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = (float3)(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_rl = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][l][k+1] + 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] + 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = (float3)(Q[0][l][k] - 0.5f*Qx[0][j][i],
Q[1][l][k] - 0.5f*Qx[1][j][i],
Q[2][l][k] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = (float3)(Q[0][l][k] + 0.5f*Qx[0][j][i],
Q[1][l][k] + 0.5f*Qx[1][j][i],
Q[2][l][k] + 0.5f*Qx[2][j][i]);
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qx[0][j][i],
Q[1][l][k] - 0.5f*Qx[1][j][i],
Q[2][l][k] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qx[0][j][i],
Q[1][l][k] + 0.5f*Qx[1][j][i],
Q[2][l][k] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
@@ -71,9 +71,10 @@ void computeFluxF(__local float Q[3][block_height+4][block_width+4],
}
}
void computeFluxG(__local float Q[3][block_height+4][block_width+4],
__local float Qy[3][block_height+2][block_width+2],
__local float G[3][block_height+1][block_width+1],
__device__
void computeFluxG(float Q[3][block_height+4][block_width+4],
float Qy[3][block_height+2][block_width+2],
float G[3][block_height+1][block_width+1],
const float g_, const float dy_, const float dt_) {
//Index of thread within block
const int tx = get_local_id(0);
@@ -86,19 +87,19 @@ void computeFluxG(__local float Q[3][block_height+4][block_width+4],
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = (float3)(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = (float3)(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
const float3 Q_rl = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][l+1][k] + 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] + 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = (float3)(Q[0][l][k] - 0.5f*Qy[0][j][i],
Q[2][l][k] - 0.5f*Qy[2][j][i],
Q[1][l][k] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = (float3)(Q[0][l][k] + 0.5f*Qy[0][j][i],
Q[2][l][k] + 0.5f*Qy[2][j][i],
Q[1][l][k] + 0.5f*Qy[1][j][i]);
const float3 Q_ll = make_float3(Q[0][l][k] - 0.5f*Qy[0][j][i],
Q[2][l][k] - 0.5f*Qy[2][j][i],
Q[1][l][k] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][l][k] + 0.5f*Qy[0][j][i],
Q[2][l][k] + 0.5f*Qy[2][j][i],
Q[1][l][k] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
@@ -122,7 +123,7 @@ void computeFluxG(__local float Q[3][block_height+4][block_width+4],
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
__kernel void swe_2D(
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
@@ -132,20 +133,20 @@ __kernel void swe_2D(
int step_,
//Input h^n
__global float* h0_ptr_, int h0_pitch_,
__global float* hu0_ptr_, int hu0_pitch_,
__global float* hv0_ptr_, int hv0_pitch_,
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
__global float* h1_ptr_, int h1_pitch_,
__global float* hu1_ptr_, int hu1_pitch_,
__global float* hv1_ptr_, int hv1_pitch_) {
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
//Shared memory variables
__local float Q[3][block_height+4][block_width+4];
__local float Qx[3][block_height+2][block_width+2];
__local float F[3][block_height+1][block_width+1];
__shared__ float Q[3][block_height+4][block_width+4];
__shared__ float Qx[3][block_height+2][block_width+2];
__shared__ float F[3][block_height+1][block_width+1];
@@ -154,12 +155,12 @@ __kernel void swe_2D(
hu0_ptr_, hu0_pitch_,
hv0_ptr_, hv0_pitch_,
Q, nx_, ny_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
//Fix boundary conditions
noFlowBoundary2(Q, nx_, ny_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
@@ -167,45 +168,45 @@ __kernel void swe_2D(
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
evolveF2(Q, F, nx_, ny_, dx_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
//Set boundary conditions
noFlowBoundary2(Q, nx_, ny_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
evolveG2(Q, F, nx_, ny_, dy_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
evolveG2(Q, F, nx_, ny_, dy_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
//Set boundary conditions
noFlowBoundary2(Q, nx_, ny_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
evolveF2(Q, F, nx_, ny_, dx_, dt_);
barrier(CLK_LOCAL_MEM_FENCE);
__syncthreads();
}