mirror of
				https://github.com/smyalygames/FiniteVolumeGPU.git
				synced 2025-10-31 20:17:41 +01:00 
			
		
		
		
	feat(array): improve checking the array for NaNs
This commit is contained in:
		
							parent
							
								
									26c0eab7c8
								
							
						
					
					
						commit
						87474dcb20
					
				| @ -1,4 +1,5 @@ | ||||
| import ctypes | ||||
| from typing import Union | ||||
| 
 | ||||
| import numpy as np | ||||
| from hip import hip, hipblas | ||||
| @ -13,12 +14,28 @@ class HIPArakawaA2D(BaseArakawaA2D): | ||||
|     A class representing an Arakawa A type (unstaggered, logically Cartesian) grid | ||||
|     """ | ||||
| 
 | ||||
|     def __init__(self, stream, nx, ny, halo_x, halo_y, cpu_variables): | ||||
|     def __init__(self, stream: hip.ihipStream_t, nx: int, ny: int, halo_x: int, halo_y: int, cpu_variables: list[Union[np.ndarray, None]]): | ||||
|         """ | ||||
|         Uploads initial data to the GPU device | ||||
|         """ | ||||
|         super().__init__(stream, nx, ny, halo_x, halo_y, cpu_variables, HIPArray2D) | ||||
| 
 | ||||
|         # Variables for ``__sum_array`` | ||||
|         # TODO should have a way of not hardcoding the dtype | ||||
|         dtype = np.float32 | ||||
|         self.__result_h = np.zeros(1, dtype=dtype) | ||||
|         self.__num_bytes = self.__result_h.itemsize | ||||
|         self.__result_d = hip_check(hip.hipMalloc(self.__num_bytes)) | ||||
|         self.__total_sum_d = hip_check(hip.hipMalloc(self.__num_bytes)) | ||||
| 
 | ||||
|         self.__handle = hip_check(hipblas.hipblasCreate()) | ||||
| 
 | ||||
|     def __del__(self): | ||||
|         # Cleanup GPU variables in ``__sum_array`` | ||||
|         hip_check(hipblas.hipblasDestroy(self.__handle)) | ||||
|         hip_check(hip.hipFree(self.__result_d)) | ||||
|         hip_check(hip.hipFree(self.__total_sum_d)) | ||||
| 
 | ||||
|     def check(self): | ||||
|         """ | ||||
|         Checks that data is still sane | ||||
| @ -31,8 +48,7 @@ class HIPArakawaA2D(BaseArakawaA2D): | ||||
|             if np.isnan(var_sum): | ||||
|                 raise ValueError("Data contains NaN values!") | ||||
| 
 | ||||
|     @staticmethod | ||||
|     def __sum_array(array: HIPArray2D) -> np.ndarray[tuple[int]]: | ||||
|     def __sum_array(self, array: HIPArray2D) -> np.ndarray[tuple[int]]: | ||||
|         """ | ||||
|         Sum all the elements in HIPArray2D using hipblas. | ||||
|         Args: | ||||
| @ -40,35 +56,22 @@ class HIPArakawaA2D(BaseArakawaA2D): | ||||
|         Returns: | ||||
|             The sum of all the elements in ``array``. | ||||
|         """ | ||||
|         dtype = array.dtype | ||||
|         result_h = np.zeros(1, dtype=dtype) | ||||
|         num_bytes = dtype.itemsize | ||||
|         result_d = hip_check(hip.hipMalloc(num_bytes)) | ||||
| 
 | ||||
|         # Sum the ``data_h`` array using hipblas | ||||
|         handle = hip_check(hipblas.hipblasCreate()) | ||||
| 
 | ||||
|         # Using pitched memory, so we need to sum row by row | ||||
|         total_sum_d = hip_check(hip.hipMalloc(num_bytes)) | ||||
|         hip_check(hip.hipMemset(total_sum_d, 0, num_bytes)) | ||||
|         hip_check(hip.hipMemset(self.__total_sum_d, 0, self.__num_bytes)) | ||||
| 
 | ||||
|         width, height = array.shape | ||||
| 
 | ||||
|         for y in range(height): | ||||
|             row_ptr = int(array.data) + y * array.pitch_d | ||||
| 
 | ||||
|             hip_check(hipblas.hipblasSasum(handle, width, row_ptr, 1, result_d)) | ||||
|             hip_check(hipblas.hipblasSasum(self.__handle, width, row_ptr, 1, self.__result_d)) | ||||
| 
 | ||||
|             hip_check(hipblas.hipblasSaxpy(handle, 1, ctypes.c_float(1.0), result_d, 1, total_sum_d, 1)) | ||||
| 
 | ||||
|             hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost)) | ||||
|             hip_check( | ||||
|                 hipblas.hipblasSaxpy(self.__handle, 1, ctypes.c_float(1.0), self.__result_d, 1, self.__total_sum_d, 1)) | ||||
| 
 | ||||
|         # Copy over the result from the device | ||||
|         hip_check(hip.hipMemcpy(result_h, total_sum_d, num_bytes, hip.hipMemcpyKind.hipMemcpyDeviceToHost)) | ||||
|         hip_check(hip.hipMemcpy(self.__result_h, self.__total_sum_d, self.__num_bytes, | ||||
|                                 hip.hipMemcpyKind.hipMemcpyDeviceToHost)) | ||||
| 
 | ||||
|         # Cleanup | ||||
|         hip_check(hipblas.hipblasDestroy(handle)) | ||||
|         hip_check(hip.hipFree(result_d)) | ||||
|         hip_check(hip.hipFree(total_sum_d)) | ||||
| 
 | ||||
|         return result_h | ||||
|         return self.__result_h | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Anthony Berg
						Anthony Berg