Added example script

This commit is contained in:
André R. Brodtkorb 2018-12-04 18:06:45 +01:00
parent 4292513c03
commit 12174b39db
3 changed files with 203 additions and 13 deletions

View File

@ -44,8 +44,12 @@ Class which keeps track of the CUDA context and some helper functions
"""
class CudaContext(object):
def __init__(self, blocking=False, use_cache=True, autotuning=True):
self.blocking = blocking
def __init__(self, device=None, context_flags=None, use_cache=True, autotuning=True):
"""
Create a new CUDA context
Set device to an id or pci_bus_id to select a specific GPU
Set context_flags to cuda.ctx_flags.SCHED_BLOCKING_SYNC for a blocking context
"""
self.use_cache = use_cache
self.logger = logging.getLogger(__name__)
self.modules = {}
@ -60,17 +64,19 @@ class CudaContext(object):
#Print some info about CUDA
self.logger.info("CUDA version %s", str(cuda.get_version()))
self.logger.info("Driver version %s", str(cuda.get_driver_version()))
self.cuda_device = cuda.Device(0)
self.logger.info("Using '%s' GPU", self.cuda_device.name())
if device is None:
device = 0
self.cuda_device = cuda.Device(device)
self.logger.info("Using device %d/%d '%s' (%s) GPU", device, cuda.Device.count(), self.cuda_device.name(), self.cuda_device.pci_bus_id())
self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability()))
# Create the CUDA context
if (self.blocking):
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_BLOCKING_SYNC)
self.logger.warning("Using blocking context")
else:
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_AUTO)
if context_flags is None:
context_flags=cuda.ctx_flags.SCHED_AUTO
self.cuda_context = self.cuda_device.make_context(flags=context_flags)
free, total = cuda.mem_get_info()
self.logger.debug(" => memory: %d / %d MB available", int(free/(1024*1024)), int(total/(1024*1024)))

View File

@ -143,6 +143,55 @@ class MPIGrid(object):
out_data = np.empty([self.comm.size] + list(data.shape), dtype=data.dtype)
self.comm.Gather(data, out_data, root)
return out_data
def getLocalRank(self):
"""
Returns the local rank on this node for this MPI process
"""
# This function has been adapted from
# https://github.com/SheffieldML/PyDeepGP/blob/master/deepgp/util/parallel.py
# by Zhenwen Dai released under BSD 3-Clause "New" or "Revised" License:
#
# Copyright (c) 2016, Zhenwen Dai
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of DGP nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#Get this ranks unique (physical) node name
node_name = MPI.Get_processor_name()
#Gather the list of all node names on all nodes
node_names = self.comm.allgather(node_name)
#Loop over all node names up until our rank
#and count how many duplicates of our nodename we find
local_rank = len([0 for name in node_names[:self.comm.rank] if name==node_name])
return local_rank
class MPISimulator(Simulator.BaseSimulator):
@ -233,9 +282,7 @@ class MPISimulator(Simulator.BaseSimulator):
self.out_n = np.empty_like(self.in_n)
self.out_s = np.empty_like(self.in_s)
self.logger.debug("Simlator rank {:d} has neighbors {:s}".format(self.grid.comm.rank, str([self.north, self.south, self.east, self.west])))
self.logger.debug("Simlator rank {:d} initialized ".format(self.grid.comm.rank))
self.logger.debug("Simlator rank {:d} initialized on {:s}".format(self.grid.comm.rank, MPI.Get_processor_name()))
def substep(self, dt, step_number):

137
mpiTesting.py Normal file
View File

@ -0,0 +1,137 @@
# -*- coding: utf-8 -*-
"""
This python module implements MPI simulations for benchmarking
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import gc
import time
import json
import logging
#MPI
from mpi4py import MPI
#CUDA
import pycuda.driver as cuda
#Simulator engine etc
from GPUSimulators import MPISimulator, Common, CudaContext
from GPUSimulators import EE2D_KP07_dimsplit
from GPUSimulators.helpers import InitialConditions as IC
from GPUSimulators.Simulator import BoundaryCondition as BC
#Get MPI COMM to use
comm = MPI.COMM_WORLD
####
#Initialize logging
####
log_level_console = 20
log_level_file = 10
log_filename = 'mpi_' + str(comm.rank) + '.log'
logger = logging.getLogger('GPUSimulators')
logger.setLevel(min(log_level_console, log_level_file))
ch = logging.StreamHandler()
ch.setLevel(log_level_console)
logger.addHandler(ch)
logger.info("Console logger using level %s", logging.getLevelName(log_level_console))
fh = logging.FileHandler(log_filename)
formatter = logging.Formatter('%(asctime)s:%(name)s:%(levelname)s: %(message)s')
fh.setFormatter(formatter)
fh.setLevel(log_level_file)
logger.addHandler(fh)
logger.info("File logger using level %s to %s", logging.getLevelName(log_level_file), log_filename)
####
# Initialize MPI grid etc
####
logger.info("Creating MPI grid")
grid = MPISimulator.MPIGrid(MPI.COMM_WORLD)
####
# Initialize CUDA
####
cuda.init(flags=0)
logger.info("Initializing CUDA")
local_rank = grid.getLocalRank()
num_cuda_devices = cuda.Device.count()
cuda_device = local_rank % num_cuda_devices
cuda_context = CudaContext.CudaContext(device=cuda_device, autotuning=False)
####
# Set initial conditions
####
logger.info("Generating initial conditions")
nx = 128
ny = 128
gamma = 1.4
save_times = np.linspace(0, 5.0, 10)
outfile = "mpi_out_" + str(MPI.COMM_WORLD.rank) + ".nc"
save_var_names = ['rho', 'rho_u', 'rho_v', 'E']
arguments = IC.genKelvinHelmholtz(nx, ny, gamma, grid=grid)
arguments['context'] = cuda_context
arguments['theta'] = 1.2
arguments['grid'] = grid
####
# Run simulation
####
logger.info("Running simulation")
#Helper function to create MPI simulator
def genSim(grid, **kwargs):
local_sim = EE2D_KP07_dimsplit.EE2D_KP07_dimsplit(**kwargs)
sim = MPISimulator.MPISimulator(local_sim, grid)
return sim
outfile = Common.runSimulation(genSim, arguments, outfile, save_times, save_var_names)
####
# Clean shutdown
####
sim = None
local_sim = None
cuda_context = None
arguments = None
logging.shutdown()
gc.collect()
####
# Print completion and exit
####
print("Completed!")
exit(0)