mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 06:24:13 +02:00
Refactoring
This commit is contained in:
parent
e38885d39b
commit
0f68c7867b
@ -83,9 +83,6 @@ class BaseSimulator:
|
||||
#Keep track of simulation time and number of timesteps
|
||||
self.t = 0.0
|
||||
self.nt = 0
|
||||
|
||||
#Log progress every n seconds during simulation
|
||||
self.log_every = 5
|
||||
|
||||
|
||||
def __str__(self):
|
||||
@ -102,31 +99,30 @@ class BaseSimulator:
|
||||
Requires that the stepEuler functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateEuler(self, t_end):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateEuler") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
|
||||
next_print = self.log_every
|
||||
printer = Common.ProgressPrinter(n)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Step with forward Euler
|
||||
self.stepEuler(local_dt)
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Step with forward Euler
|
||||
self.stepEuler(local_dt)
|
||||
|
||||
#Print info
|
||||
if (t.elapsed() >= next_print):
|
||||
self.logger.info("%s simulated %d of %d steps (Euler)", self, i, n)
|
||||
next_print += self.log_every
|
||||
self.check()
|
||||
#Print info
|
||||
print_string = printer.getPrintString(i)
|
||||
if (print_string):
|
||||
self.logger.info("%s (Euler): %s", self, print_string)
|
||||
self.check()
|
||||
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps (Euler)", self, t_end, self.t, n)
|
||||
#self.logger.info("%s simulated %f seconds to %f with %d steps (Euler)", self, t_end, self.t, n)
|
||||
return self.t, n
|
||||
|
||||
"""
|
||||
@ -134,30 +130,28 @@ class BaseSimulator:
|
||||
Requires that the stepRK functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateRK(self, t_end, order):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateRK") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / self.dt + 1)
|
||||
|
||||
printer = Common.ProgressPrinter(n)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform all the Runge-Kutta substeps
|
||||
self.stepRK(local_dt, order)
|
||||
|
||||
next_print = self.log_every
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform all the Runge-Kutta substeps
|
||||
self.stepRK(local_dt, order)
|
||||
|
||||
#Print info
|
||||
if (t.elapsed() >= next_print):
|
||||
self.logger.info("%s simulated %d of %d steps (RK2)", self, i, n)
|
||||
next_print += self.log_every
|
||||
self.check()
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps (RK2)", self, t_end, self.t, n)
|
||||
#Print info
|
||||
print_string = printer.getPrintString(i)
|
||||
if (print_string):
|
||||
self.logger.info("%s (RK2): %s", self, print_string)
|
||||
self.check()
|
||||
|
||||
return self.t, n
|
||||
|
||||
"""
|
||||
@ -165,31 +159,29 @@ class BaseSimulator:
|
||||
Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses
|
||||
"""
|
||||
def simulateDimsplit(self, t_end):
|
||||
with Common.Timer(self.__class__.__name__ + ".simulateDimsplit") as t:
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / (2.0*self.dt) + 1)
|
||||
|
||||
next_print = self.log_every
|
||||
# Compute number of timesteps to perform
|
||||
n = int(t_end / (2.0*self.dt) + 1)
|
||||
|
||||
printer = Common.ProgressPrinter(n)
|
||||
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform the dimensional split substeps
|
||||
self.stepDimsplitXY(local_dt)
|
||||
self.stepDimsplitYX(local_dt)
|
||||
|
||||
#Print info
|
||||
if (t.elapsed() >= next_print):
|
||||
self.logger.info("%s simulated %d of %d steps (Dimsplit)", self, i, n)
|
||||
next_print += self.log_every
|
||||
self.check()
|
||||
for i in range(0, n):
|
||||
# Compute timestep for "this" iteration
|
||||
local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt))
|
||||
|
||||
# Stop if end reached (should not happen)
|
||||
if (local_dt <= 0.0):
|
||||
break
|
||||
|
||||
# Perform the dimensional split substeps
|
||||
self.stepDimsplitXY(local_dt)
|
||||
self.stepDimsplitYX(local_dt)
|
||||
|
||||
#Print info
|
||||
print_string = printer.getPrintString(i)
|
||||
if (print_string):
|
||||
self.logger.info("%s (Dimsplit): %s", self, print_string)
|
||||
self.check()
|
||||
|
||||
self.logger.info("%s simulated %f seconds to %f with %d steps (Dimsplit)", self, t_end, self.t, 2*n)
|
||||
return self.t, 2*n
|
||||
|
||||
|
||||
|
@ -57,6 +57,59 @@ __device__ float4 F_func(const float4 Q, float P) {
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
|
||||
*/
|
||||
__device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) {
|
||||
const float h_l = Q_l.x;
|
||||
const float h_r = Q_r.x;
|
||||
|
||||
// Calculate velocities
|
||||
const float u_l = Q_l.y / h_l;
|
||||
const float u_r = Q_r.y / h_r;
|
||||
|
||||
// Calculate pressures
|
||||
const float P_l = pressure(Q_l, gamma);
|
||||
const float P_r = pressure(Q_r, gamma);
|
||||
|
||||
// Estimate the potential wave speeds
|
||||
const float c_l = sqrt(gamma*P_l/Q_l.x);
|
||||
const float c_r = sqrt(gamma*P_r/Q_r.x);
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
||||
|
||||
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
|
||||
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
|
||||
|
||||
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
||||
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
||||
|
||||
// Compute wave speed estimates
|
||||
const float S_l = u_l - c_l*q_l;
|
||||
const float S_r = u_r + c_r*q_r;
|
||||
|
||||
//Upwind selection
|
||||
if (S_l >= 0.0f) {
|
||||
return F_func(Q_l, P_l);
|
||||
}
|
||||
else if (S_r <= 0.0f) {
|
||||
return F_func(Q_r, P_r);
|
||||
}
|
||||
//Or estimate flux in the star region
|
||||
else {
|
||||
const float4 F_l = F_func(Q_l, P_l);
|
||||
const float4 F_r = F_func(Q_r, P_r);
|
||||
const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
|
||||
return flux;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Central upwind flux function
|
||||
|
Loading…
x
Reference in New Issue
Block a user