diff --git a/GPUSimulators/Simulator.py b/GPUSimulators/Simulator.py index d0c9f28..87319b4 100644 --- a/GPUSimulators/Simulator.py +++ b/GPUSimulators/Simulator.py @@ -83,9 +83,6 @@ class BaseSimulator: #Keep track of simulation time and number of timesteps self.t = 0.0 self.nt = 0 - - #Log progress every n seconds during simulation - self.log_every = 5 def __str__(self): @@ -102,31 +99,30 @@ class BaseSimulator: Requires that the stepEuler functionality is implemented in the subclasses """ def simulateEuler(self, t_end): - with Common.Timer(self.__class__.__name__ + ".simulateEuler") as t: - # Compute number of timesteps to perform - n = int(t_end / self.dt + 1) + # Compute number of timesteps to perform + n = int(t_end / self.dt + 1) - next_print = self.log_every + printer = Common.ProgressPrinter(n) + + for i in range(0, n): + # Compute timestep for "this" iteration + local_dt = np.float32(min(self.dt, t_end-i*self.dt)) - for i in range(0, n): - # Compute timestep for "this" iteration - local_dt = np.float32(min(self.dt, t_end-i*self.dt)) - - # Stop if end reached (should not happen) - if (local_dt <= 0.0): - break - - # Step with forward Euler - self.stepEuler(local_dt) + # Stop if end reached (should not happen) + if (local_dt <= 0.0): + break + + # Step with forward Euler + self.stepEuler(local_dt) - #Print info - if (t.elapsed() >= next_print): - self.logger.info("%s simulated %d of %d steps (Euler)", self, i, n) - next_print += self.log_every - self.check() + #Print info + print_string = printer.getPrintString(i) + if (print_string): + self.logger.info("%s (Euler): %s", self, print_string) + self.check() - self.logger.info("%s simulated %f seconds to %f with %d steps (Euler)", self, t_end, self.t, n) + #self.logger.info("%s simulated %f seconds to %f with %d steps (Euler)", self, t_end, self.t, n) return self.t, n """ @@ -134,30 +130,28 @@ class BaseSimulator: Requires that the stepRK functionality is implemented in the subclasses """ def simulateRK(self, t_end, order): - with Common.Timer(self.__class__.__name__ + ".simulateRK") as t: - # Compute number of timesteps to perform - n = int(t_end / self.dt + 1) + # Compute number of timesteps to perform + n = int(t_end / self.dt + 1) + + printer = Common.ProgressPrinter(n) + + for i in range(0, n): + # Compute timestep for "this" iteration + local_dt = np.float32(min(self.dt, t_end-i*self.dt)) + + # Stop if end reached (should not happen) + if (local_dt <= 0.0): + break + + # Perform all the Runge-Kutta substeps + self.stepRK(local_dt, order) - next_print = self.log_every - - for i in range(0, n): - # Compute timestep for "this" iteration - local_dt = np.float32(min(self.dt, t_end-i*self.dt)) - - # Stop if end reached (should not happen) - if (local_dt <= 0.0): - break - - # Perform all the Runge-Kutta substeps - self.stepRK(local_dt, order) - - #Print info - if (t.elapsed() >= next_print): - self.logger.info("%s simulated %d of %d steps (RK2)", self, i, n) - next_print += self.log_every - self.check() - - self.logger.info("%s simulated %f seconds to %f with %d steps (RK2)", self, t_end, self.t, n) + #Print info + print_string = printer.getPrintString(i) + if (print_string): + self.logger.info("%s (RK2): %s", self, print_string) + self.check() + return self.t, n """ @@ -165,31 +159,29 @@ class BaseSimulator: Requires that the stepDimsplitX and stepDimsplitY functionality is implemented in the subclasses """ def simulateDimsplit(self, t_end): - with Common.Timer(self.__class__.__name__ + ".simulateDimsplit") as t: - # Compute number of timesteps to perform - n = int(t_end / (2.0*self.dt) + 1) - - next_print = self.log_every + # Compute number of timesteps to perform + n = int(t_end / (2.0*self.dt) + 1) + + printer = Common.ProgressPrinter(n) - for i in range(0, n): - # Compute timestep for "this" iteration - local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt)) - - # Stop if end reached (should not happen) - if (local_dt <= 0.0): - break - - # Perform the dimensional split substeps - self.stepDimsplitXY(local_dt) - self.stepDimsplitYX(local_dt) - - #Print info - if (t.elapsed() >= next_print): - self.logger.info("%s simulated %d of %d steps (Dimsplit)", self, i, n) - next_print += self.log_every - self.check() + for i in range(0, n): + # Compute timestep for "this" iteration + local_dt = np.float32(0.5*min(2*self.dt, t_end-2*i*self.dt)) + + # Stop if end reached (should not happen) + if (local_dt <= 0.0): + break + + # Perform the dimensional split substeps + self.stepDimsplitXY(local_dt) + self.stepDimsplitYX(local_dt) + + #Print info + print_string = printer.getPrintString(i) + if (print_string): + self.logger.info("%s (Dimsplit): %s", self, print_string) + self.check() - self.logger.info("%s simulated %f seconds to %f with %d steps (Dimsplit)", self, t_end, self.t, 2*n) return self.t, 2*n diff --git a/GPUSimulators/cuda/EulerCommon.h b/GPUSimulators/cuda/EulerCommon.h index e34966a..02af22b 100644 --- a/GPUSimulators/cuda/EulerCommon.h +++ b/GPUSimulators/cuda/EulerCommon.h @@ -57,6 +57,59 @@ __device__ float4 F_func(const float4 Q, float P) { +/** + * Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180) + */ +__device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) { + const float h_l = Q_l.x; + const float h_r = Q_r.x; + + // Calculate velocities + const float u_l = Q_l.y / h_l; + const float u_r = Q_r.y / h_r; + + // Calculate pressures + const float P_l = pressure(Q_l, gamma); + const float P_r = pressure(Q_r, gamma); + + // Estimate the potential wave speeds + const float c_l = sqrt(gamma*P_l/Q_l.x); + const float c_r = sqrt(gamma*P_r/Q_r.x); + + // Compute h in the "star region", h^dagger + const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r); + + const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) ); + const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) ); + + const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f; + const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; + + // Compute wave speed estimates + const float S_l = u_l - c_l*q_l; + const float S_r = u_r + c_r*q_r; + + //Upwind selection + if (S_l >= 0.0f) { + return F_func(Q_l, P_l); + } + else if (S_r <= 0.0f) { + return F_func(Q_r, P_r); + } + //Or estimate flux in the star region + else { + const float4 F_l = F_func(Q_l, P_l); + const float4 F_r = F_func(Q_r, P_r); + const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l); + return flux; + } +} + + + + + + /** * Central upwind flux function