2.4 KiB
lecture, date
| lecture | date |
|---|---|
| 5 | 2025-01-20 |
[!info] A normed space is a Banach Space when the corresponding metric space is complete. Any normed space can be completed to a Banach Space, see the real numbers from
\mathbb{Q}.
[!example] Example:
\mathbb{C}^nvector space, then
\| \, v \, \|_{1} \equiv \Sigma_{k=1}^{n} |v_{k}|, \; v=(v_{1}, \dots, v_{n})\| \, v \, \|_{\infty} \equiv \text{sub}_{k=1,\dots,n}\{ |v_{k} | \}Which are norms on
\mathbb{C}^n
Example
[!question] Consider
C_{c}(X) \subset \Pi_{X}\mathbb{C} = \{ f : X \to C \}on functionsX -> \mathbb{C}that are non-zero for finitely only manyx \in X.
Then C_{c}(X) is a vector space under op.
f \neq \text{only on} \, Y \, \subset \, X
q \neq \, \text{only on} \, Z \subset X
\implies f+q \neq 0 \, \text{only on} \, Y \cup Z
a \times f \neq \, \text{only on} \, Y
with \delta_{x}(y) = \begin{cases}1, & x=y\\ 0, & x\neq y\end{cases}
Has linear basis \{ \delta_{x} \}, x \in X
Proof
Given that f \in C_{c}(X) then
f = \Sigma_{x \in X} f(x) \times \delta_{x} is a finite sum, and the only possibility.
So \text{dim} C_{c} (X) = |X|.
Definite norms on C_{c}(X) by \| \, f \, \|_{1} = \Sigma_{x \in X} | f(x) | and \| \, f \, \|_{\infty} = \text{sup}_{x \in X} | f(x) | when |X| = n we recover \mathbb{C}^n.
We write $V \simeq W$and say that V and W are Isomorphic
- As sets if
\existsBijectivef : V \to W - As vector spaces if in addition
fis linear;f(a \times u + b \times v) = a \times f(u) + b \times f(v), \; \forall a,b \in \mathbb{C}, \; u,v \in V - As Normed vector Space if in addition
fis Isometric;\| \, f(v) \, \| \, = \| \, v \, \|, \; \forall v \in V.fshould preserve all relevant structure.
Hilbert Spaces
Triangle Inequality
Follows from the Cauchy-Schwarz Inequality
[!example] Example on
C_{c}(X)then(f | g) = \Sigma_{x \in X} f(x) \times \overline{g(x)}This defines an Inner Product, which can be completed to a Hilbert Spaces.
\| \, f \, \|_{2} = (\Sigma_{x \in X} | f(x) |^2)^{\frac{1}{2}}[!note] The Inner Product here
\mathbb{C}^{n} (u | v) = \Sigma_{k = 1}^{n} u_{k} \overline{v_{k}}\mathbb{R}^{n} \| \, u \, \|_{2} = (\Sigma |u_{k}|^{2})^{\frac{1}{2}}\vec{u} \times \vec{v} = (\vec{u} | \vec{v})