generated from smyalygames/quartz
433 B
433 B
Definition
A norm on V
is a map \|\cdot\| : V \to [ \, 0, \infty \rangle
such that
\| u + v \| \leq \| u \| + \| v \|, \; \forall u,v \in V
\| c \times v \| = | c | \times \| v \|, \; \forall v \in V, \, \forall c \in \mathbb{C}
\| v \| = 0 \implies v = 0
Think of \| v \|
as the length of v
.
Norm of 0
\| 0 \| = \| 0 \times u \| = \| c \times u \| = \| 0 \| \times \|u \| = 0 \times \| u \| = 0