3.1 KiB
lecture, date
lecture | date |
---|---|
14 | 2025-03-03 |
Recap
Going over Lecture 13 - Measure Theory
- Definition of Sigma-Algebra
- Concept of Measurable function
- If
F \subset \wp(X)
the $\sigma$-algebra generated byF
is\cap_{F \subset M} M
$\sigma$-algebra - New?: Borel Sigma-Algebra
- Definition of Pointwise
Measure \mu
on X
with M
:
\mu : M \to [0, \infty]
such that
\mu(0) = 0
\mu(\cup_{n=1}^\infty A_{n}) = \Sigma_{n=1}^\infty \mu(A_{n})
For A_{n} \in M
pairwise disjoint
Example M = \wp(X)
define measure:
\mu(A) = \begin{cases}\#A & \text{When}\ A\ \text{is finite}\\ \infty & \text{When}\ n\ \text{is infinite}\end{cases}
Simple Function
A simple function on X
is a function s : X \to \mathbb{R}
of the form s = \Sigma_{i=1}^{n} a_{i} \times X_{a_{i}}
for pairwise disjoint A_{i} \subset X
and distinct real numbers a_{i}
X_{A}(x) = \begin{cases}1 & \text{If}\ x \in A\\ 0 & \text{If}\ x \notin A\end{cases}
Note
If
X
hasM
then:s
is Measurable\iff
allA_{i}
are Measurable
A_{i} = s^{-1}(\{ a_{i} \}) = s^{-1}(\mathbb{R} \setminus \{ a_{i} \})^{\complement}
If we have a Measure \mu
on X
, define \int_{A} s \, d\mu \equiv \Sigma_{i=1}^{n} a_{i} \times \mu (A \cap A_{i})
for A \in M
(they are all \in [0, \infty])
.
Lebesgue Integral
Defines Lebesgue Integral in the lecture
f : X \to [0, \infty]
is \int_{A} f \, d\mu \equiv \sup_{0 \leq s \leq f} \int_{A} s \, d\mu
Cut out A
when A = X
.
\int f \, d\mu \equiv \int f(x) \, d\mu(x)
Behaves nice under limits
\int \lim f_{n} \, d\mu = \lim \int f_{n} \, d\mu
Lemma
Given Measure \mu
, and
A_{1} \subset A_{2} \subset A_{3} \subset \dots
Measurable sets.
[!info]- What this subset of a subset of a subset... looks like !
%%Drawing 2025-03-03 11.49.17.excalidraw.md, and the Drawing 2025-03-03 11.49.17.excalidraw.light.svg%%
Then \mu(A_{n}) \to \mu(\cup_{m = 1}^{\infty} A_{m})
as n \to \infty
.
Proof
Consider B_{n} = A_{n} \setminus A_{n-1}
with A_{0} \equiv \emptyset
.
So A_{n} = B_{1} \cup \dots \cup B_{n}
, and \cup B_{n} = \cup A_{n}
, and B_{n} \cap B_{m} = \emptyset
when n \neq m
.
Hence \mu(\cup A_{m}) = \mu(\cup B_{m}) = \Sigma_{m = 1}^{\infty} \mu (B_{m}) = \lim_{ N \to \infty } \Sigma_{m=1}^{N} \mu (B_{m})
.
Lemma
X
, \mu
, s : X \to [0, \infty]
Measurable Simple Function.
Then A \mapsto \int_{A} s \, d\mu
defines a Measure on X
.
Proof
A = \emptyset \implies
measure is 0
. Given Continuous disjoint union \cup B_{n}
with B_{n}
Measure, then
\int_{\cup B_{n}} s \, d\mu = \Sigma_{i} a_{i} \mu(\underbrace{A_{i} \cap (\cup B_{n})}_{\cup(A_{i} \cap B_{n})}) = \Sigma_{i} a_{i} \Sigma_{n}^{\infty} \mu (A_{i} \cap B_{n}) = \Sigma_{n}^{\infty} \Sigma_{i} a_{i} \mu(A_{i} \cap B_{n}) = \Sigma_{n}^{\infty} \int_{B_{n}} s \, d\mu
QED