generated from smyalygames/quartz
676 B
676 B
A simple function on X
is a function s : X \to \mathbb{R}
of the form s = \Sigma_{i=1}^{n} a_{i} \times X_{a_{i}}
for pairwise disjoint A_{i} \subset X
and distinct real numbers a_{i}
X_{A}(x) = \begin{cases}1 & \text{If}\ x \in A\\ 0 & \text{If}\ x \notin A\end{cases}
Note
If
X
hasM
then:s
is Measurable\iff
allA_{i}
are Measurable
A_{i} = s^{-1}(\{ a_{i} \}) = s^{-1}(\mathbb{R} \setminus \{ a_{i} \})^{\complement}
If we have a Measure \mu
on X
, define \int_{A} s \, d\mu \equiv \Sigma_{i=1}^{n} a_{i} \times \mu (A \cap A_{i})
for A \in M
(they are all \in [0, \infty])
.