5.8 KiB
lecture, date
lecture | date |
---|---|
16 | 2025-03-10 |
Recap
Recap from the Lecture 15.
L_{1}(\mu) = \left\{ \text{measure}\ f : \underbrace{X}_{\mu} \to \mathbb{C} \, | \, \underbrace{\int |f| \, d\mu}_{= \, \sup_{0 \leq s \leq |f|} \int s \, d\mu} \lt \infty \right\}
s = \sum_{i = 1}^{n} a_{i} \times X_{A_{i}}
\int s \, d\mu = \sum_{i=1}^{n} a_{i} \times \mu(A_{i})
f = \mathrm{Re} f + i \mathrm{Im} f = (\mathrm{Re} f)^{+} - (\mathrm{Re} f)^{-} + i((\mathrm{Im} f)^{+} - (\mathrm{Im} f)^{-})
0 \leq \int (\mathrm{Re} f)^{\pm} \, d\mu \leq \int |f| \, d\mu
Proposition
L^{1} (\mu)
is a Vector Space under Pointwise operations, and the \int : L^{1}(\mu) \to \mathbb{C} \, d\mu
is linear, and | \int f \, d\mu | \leq \int |f| \, d\mu
.
Proof
Let f, g \in L^{1}(\mu)
, a \in \mathbb{C}
.
Assume first that f, g \geq 0
Simple Function with distinct values a_{i}
and b_{i}
, let A_{i} = \{ x \in X \, | \, f(x) = a_{i} \}
and B_{j} = \{ x \in X \, | \, g(x) = b_{j} \}
Then \int_{A_{i} \cap B_{j}} (f + g) \, d\mu = (a_{i} + b_{j}) \times \mu (A_{i} \cap B_{j})
= a_{i} \times \mu (A_{i} \cap B_{j}) + b_{j} \times \mu(A_{i} + B_{j})
= \int_{A_{i} + B_{j}} f \, d\mu + \int_{A_{i} + B_{j}} g \, d\mu
Note
X \underbrace{=}_{\text{disjoint union}} \cup(A_{i} \cap B_{j})
A \mapsto \int_{A} s \, d\mu
MeasureL1
.
\implies \int_{X} (f + g) \, d\mu = \int f \, d\mu + \int g \, d\mu
LHS = \sum_{i j} \int (f + g) \, d\mu = \sum_{i j} \left( \int_{A_{i} \cap B_{j}} f \, d\mu + \int_{A_{i} \cap B_{j}} g \, d\mu\right)
= \sum_{i j} \int_{A_{i} \cap B_{j}} f \, d\mu + \sum_{i j} \int_{A_{i} \cap B_{j}} g \, d\mu
=^{L_{1}} \int_{X} f \, d\mu + \int_{X} g \, d\mu
L2
:
0 \leq s_{1} \leq s_{2} \leq \dots \leq f
f=\lim_{ n \to \infty } s_{n}
By L_{2}
and Lebesgue's Monotone Convergence Theorem (LMCT) \implies \int
is additive for all non-negative Measurable functions f
and g
.
\int (f + g) \, d\mu =^{L_{2}} \int \lim_{ n \to \infty } (s_{n} + s_{n}') \, d\mu =^{\text{LMCT}} \lim_{ n \to \infty } \int (s_{n} + s_{n}') \, d\mu
(from above) = \lim_{ n \to \infty } (\int s_{n} \, d\mu + \int s_{n}' \, d\mu
(\lim
splits) \lim_{ n \to \infty } \int s_{n} \, d\mu + \lim_{ n \to \infty } \int s_{n}' \, d\mu
=^{\text{LMCT}} \int f \, d\mu + \int g \, d\mu
For the complex case we have \int \underbrace{| af + g |}_{\leq |a| \times |f| + |g|} \, d\mu \leq \int (| a | \times |f| + |g|) \, d\mu
= \int |a| \times |f| \, d\mu + \int |g| \, d\mu = |a| \times \underbrace{\int |f|}_{\lt \infty} \, d\mu + \underbrace{\int |g| \, d\mu}_{\lt \infty} < \infty
, so af + g \in L^{1}(\mu)
when f, g \in L^{1}(\mu)
.
So L^{1}(\mu)
is a Vector Space.
[!info]- Why it's
af + g
and notaf + bg
Usually you would useaf + bg
and have to prove for thebg
part as well, butaf + g
is enough for the proof as you can do:af + bg = af + (bg + 0)
as the parts in the bracket would belong in
L1
as well.
Then use the definition of the integral for complex functions to see that it is additive. Clearly \int a f \, d\mu = a \int f \, d\mu
when a \geq 0
. For a \lt 0
use (-g)^{\pm} = g^{\mp}
etc. Check for a = i
, but this is okay as \int i f \, d\mu = \int i (\mathrm{Re} f + i \mathrm{Im} f) \, d\mu = \int (-\mathrm{Im} f + i \mathrm{Re} f) \, d\mu = - \int \mathrm{Im}f \, d\mu + i \int \mathrm{Re} f \, d\mu = i \times \int f \, d\mu
.
So \int a f \, d\mu = a \int f \, d\mu, \; \forall a \in \mathbb{C}
, and the integral is a linear function.
Finally, pick b \in \mathbb{C}
such that | \int f \, d\mu | = b \times \underbrace{\int f \, d\mu}_{z}
[!note]- What is happening at
z
Remember the rules of complex numbers:|z| = b \times z
b = \frac{|z|}{z}
(linear) = \int b f \, d\mu = \int \underbrace{\mathrm{Re}(b f)}_{\leq |b f|} \, d\mu \leq \int |b f| \, d\mu = \int \underbrace{|b|}_{=1} \times |f| \, d\mu = \int |f| \, d\mu
QED.
Lebesgue's Dominated Convergence Theorem
It is a theorem for complex valued functions. Also see the Lebesgue's Dominated Convergence Theorem.
Let \{ f_{n} \}
be Measurable functions f_{n} : X \to \mathbb{C}
, and \mu
Measure on X
. Assume \exists g \in L^{1}
such that all f_{n} \leq g
.
Then \lim_{ n \to \infty } \int f_{n} \, d\mu = \int \underbrace{\lim_{ n \to \infty } f_{n}}_{f} \, d\mu
.
If you have a measure so that the whole space is finite, \mu(x) < \infty
:
\implies \int 1 \, d\mu = \mu(x) < \infty
(can use g
instead of the 1
)
Proof
By Fatou's Lemma
\int 2g \, d\mu \underbrace{=}_{f = \lim f_{n}} \int \lim_{ n \to \infty } \inf(\underbrace{2g - |f_{n} - f|}_{\geq 0}) \, d\mu
(by Fatou's Lemma) \leq \lim_{ n \to \infty } \inf \int (2g - |f_{n} - f|) \, d\mu
(by #Proposition) \int 2g \, d\mu + \lim_{ n \to \infty }\inf\left( -\int |f_{n} - f| \, d\mu \right)
= \int 2g \, d\mu - \lim_{ n \to \infty }\sup \int |f_{n} - f | \, d\mu
so \lim_{ n \to \infty } \sup \int |f_{n} - f \, d\mu \leq 0
, and \lim_{ n \to \infty } \underbrace{\int |f_{n} - f| \, d\mu}_{\geq 0} \leq 0
, so \lim_{ n \to \infty } \int |f_{n} - f| \, d\mu = 0
.
Then \lim_{ n \to \infty } | \int f_{n} \, d\mu - \int f \, d\mu |
(by #Proposition) = \lim_{ n \to \infty } | \int (f_{n} - f) \, d\mu |
(again, by #Proposition) \leq \lim_{ n \to \infty } \int |f_{n} - f \, d\mu = 0
.
QED.
[!example] Another example
\lim_{ n \to \infty } \lim_{ m \to \infty } \frac{n}{m} = \lim_{ n \to \infty } 0 = 0
Then swap the limits
\lim_{ m \to \infty } \lim_{ n \to \infty } \frac{n}{m} = \lim_{ m \to \infty } \infty = \infty
Which are two different numbers as
0 \neq \infty
.