7.2 KiB
lecture, date
lecture | date |
---|---|
17 | 2025-03-13 |
Let (X, \mu)
be a Measure space. For p > 0
and a Measurable function f : X \to \mathbb{C}
, then we define \| f \|_{p} = (\int \mid f \mid^{p} \, d\mu)^{\frac{1}{p}}
.
Note
\mid f + g \mid \leq \mid f \mid + \mid g \mid
\| f + g \|_{p} \leq \| f \|_{p} + \| g \|_{p}
A pair of conjugate exponents is (1, \infty)
, (\infty, 1)
, or (p, q)
with p, q \gt 0
and \frac{1}{p} + \frac{1}{q} = 1
. Note that (2, 2)
is okay (it also gives you a Hilbert Spaces).
Proposition
Let f, g : X \to [0, \infty]
be measurable on (X, \mu)
. Then \| f \times g \|_{1} \leq \| f \|_{p} \times \| g \|_{q}
(Hölder's Inequality) and \| f + g \|_{p} \leq \| f \|_{p} + \| g \|_{p}
(Minkowski's Inequality) for any pair of Conjugate Exponents (p, q)
with p, q \gt 0
.
Proof
Hölder's Inequality
To show Hölder's Inequality, we may assume that \| f \|_{p}
, \| g \|_{q}
are positive real numbers
[!note] Need:
\Pi_{i=1}^{n} y_{i}^{a_{i}} \leq^{(*)} \sum_{i=1}^{n} a_{i} \times y_{i}
whena_{i}, y_{i} \gt 0
and\sum_{i = 1}^{n} a_{i} = 1
.
Use (* from the note above) with a_{1} = \frac{1}{p}
, a_{2} = \frac{1}{q}
, y_{1} = \left(\frac{\mid f(x) \mid}{\| f \|_{p}}\right)^{p}
, y_{2} = \left(\frac{\mid g(x) \mid}{\| g \|_{q}} \right)^{q}
for x
such that y_{i} \gt 0
.
Then
\frac{\mid f(x) \times g(x) \mid}{\| f \|_{p} \times \| g \|_{q}} \leq \frac{\mid f(x) \mid^{p}}{p \times \| f \|_{p}^{p}} + \frac{\mid g(x) \mid^{q}}{q \times \| g \|_{q}^{q}}
Integration gives
\frac{\| f \times g \|_{1}}{\| f \|_{p} \times \| g \|_{q}} \leq \frac{1}{p} + \frac{1}{q} = 1 \implies \text{Hölder's Inequality}
Minkowski's Inequality
To get Minkowski's Inequality, note that \| f \times (f + g)^{p-1} \|_{1} \leq \| f \|_{p} \times \| (f + g)^{p - 1} \|_{q}
by Hölder's Inequality.
And similarly
\| g \times (f + g)^{p - 1} \|_{1} \leq \| g \|_{p} \times \| (f + g)^{p - 1} \|_{q}
Then combine the two
\| f + g \|_{p}^{p} = \| (f + g)^{p} \|_{1} = \| (f + g) \times (f + g)^{p-1} \|_{1} \leq \| f \times (f + g)^{p-1} \|_{1} + \| g \times (f + g)^{p-1} \|_{1}
\leq \| f \|_{p} \times \| (f + g)^{p-1} \|_{q} + \| g \|_{p} \times \| (f + g)^{p-1} \|_{q}
= \| (f + g)^{p-1} \|_{q} \times \left( \| f \|_{p} + \| g \|_{p} \right)
Then we have
\frac{\| f + g \|_{p}^{p}}{\| (f + g)^{p-1} \|_{q}} = \| f + g \|_{p}
(This is something that you can check)
And then we get the Minkowski's Inequality.
Provided the denominator is \neq 0, \infty
, this can be assumed: Minkowski's Inequality holds if \text{LHS} = 0
. If \text{RHS} \lt \infty
, then \| f + g \|_{p} \lt \infty
since \left| \frac{(f + g)}{2} \right|^{p} \leq \frac{1}{2} \mid f \mid^{p} + \frac{1}{2} \mid g \mid^{p}
.
QED.
$L^{p}(\mu)$-spaces
Let p \in [1, \infty \rangle
. By Minkowski's Inequality the set of Measure f : X \to \mathbb{C}
with \| f \|_{p} \lt \infty
on (X, \mu)
is a Complex Vector Space V
. Note \| a \times f \|_{p} = ( \int \underbrace{\mid a f \mid^{p}}_{\mid a \mid^{p} \times \mid f \mid^p} \, d\mu )^{\frac{1}{p}} = \mid a \mid \times \left( \int \mid f \mid^{p} \, d\mu \right)^{\frac{1}{p}} = \mid a \mid \times \| f \|_{p}
.
[!note]-
\| f \|_{p} = \left( \int \mid f \mid^{p} \, d\mu \right)^{\frac{1}{p}}
\| f + g \|_{p} \leq \| f \|_{p} + \| g \|_{p}
We have almost a Norm \| \cdot \|_{p}
on V
, except \| f \|_{p} = 0 \;\not\!\!\!\implies f = 0
almost everywhere.
In fact f = 0
almost everywhere, in that $\exists$Measure A \subset X
such that f\restriction_{A} = 0
and \mu(A^{\complement})= 0
.
[!example]
\int f \, d\mu = \int_{A \cup A^{\complement}} f \, d\mu
= \int_{A} f \, d\mu + \int_{A^{\complement}} f \, d\mu
[!example]
f \restriction_{A} = f
onA
.g(x) = \begin{cases} f(x), & \forall x \in A\\ 0, & \forall x \in A^{\complement}, A = f^{-1}(\mathbb{C} \setminus \{ 0 \})\end{cases}
[!example]
\int g \, d\mu = \int_{A} g \, d\mu + \int_{A^{\complement}} g \, d\mu = \int_{A} g \, d\mu = \int f \, d\mu
Define equivalence relation on V
by f \sim g
if f - g = 0
almost everywhere.
Then V \setminus \sim
will be a Vector Space and with Norm \| \, [ \, f \, ] \, \|_{p} \equiv \| \, f \, \|_{p}
. Then \| \, [ \, f \, ] \, \|_{p} = 0 \implies f = 0
almost everywhere, so [\, f \, ] = [\, 0 \,] = 0
.
Theorem
L^{p}(\mu) = V \setminus \sim
is a Banach Space.
L^{2}(\mu)
is a Hilbert space with (f \mid g) = \int f \times \bar{g} \, d\mu
.
Exercises
This is the exercise part of the lecture.
Exercise 3.3.6 Question 2
(X, \mu)
, f : X \to [0, \infty \rangle
Measurable such that \int f \, d\mu = 0
.
Show that f = 0
almost everywhere.
Hint: A \equiv \{ x \mid f(x) \gt 0 \} = \cup_{n = 1}^{\infty} A_{n}
, where A_{n} = \underbrace{\left\{ x \mid f(x) \gt \frac{1}{n} \right\}}_{f^{-1} \left( \langle \frac{1}{n}, \infty \rangle \right)} \in \sigma
.
Proof
If \mu(A) \gt 0
, then 0 \lt \mu(A) \lt \sum_{n=1}^{\infty} \mu(A_{n})
, so \mu(A_{m}) \gt 0
for some m
.
Then \int f \, d\mu \geq \int_{A} f \, d\mu \geq \int_{A_{m}} f \, d\mu \geq \int_{A_{m}} \frac{1}{m} \, d\mu = \frac{1}{m} \times \mu(A_{m}) \gt 0
, which is a contradiction.
So \mu(A) = 0
and f = 0
almost everywhere.
QED.
Exercise 3.4.5 Question 3
What is L^{p}(\mu)
for p \in [1, \infty \rangle
when \mu
is the Measure?
[!note] On "counting measure" I thing "counting measure" is the same way that has been said in short hand with "measure" for all the previous lectures.
Proof
f : X \to \mathbb{C}
all functions. \sigma = \wp(X)
.
[!note] What is
L^{p}(\mu)?
\| f \|_{p} = (\int \mid f \mid^{p} \, d\mu)^{\frac{1}{p}}
V = \left\{ f : X \to \mathbb{C} \mid \int \mid f \mid^{p} \, d\mu \lt 0 \right\}
L^{p}(\mu) = V \setminus \sim
Say g : X \to [0, \infty \rangle
.
Then (define: s = \sum_{i = 1}^{n} a_{i} X_{A_{i}}
) \int g \, d\mu = \sup_{0 \leq s \leq g} \int s \, d\mu = \sup_{0\leq s\leq g} \sum_{i=1}^{n} \overbrace{a_{i}}^{\neq 0} \times \mu(A_{i}) = \infty
if any A_{i}
is infinite.
For any finite subset F
of X
, define
S_{F}(x) = \begin{cases}g(x), & x\in F \\ 0, & x \not\in F\end{cases}
Then S_{F}
is a Simple Function, and 0\leq S_{F} \leq g
. Have \int S_{F} \, d\mu = \int_{F} g \, d\mu = \sum_{x \in F} g(x)
S_{F} = \sum_{x \in F} g(x) X_{\{ x \}}
since \int S_{F} \, d\mu = \sum_{x \in F} g(x) \mu \underbrace{(\{ x \})}_{1}
\sum_{x \in F} g(x) \times \underbrace{X_{\{ x \}} (y)}_{\delta x, y} = g(y) = S_{F}(y)
X = \mathbb{N}
F = \{ 1, \dots, n \}
Then \int g \, d\mu = \sup_{0 \leq s \leq g} \int s \, d\mu \geq \sup_{\text{F finite}} \sum_{x \in F} g(x) \overbrace{=}^{x =\mathbb{N}} \sum_{n=1}^{\infty} g(n)
(\mathbb{N}
, \mu
Continuous Measure) \implies l^{p}(\mathbb{N}) = L^{p}(\mu) = \left\{ \{ x_{n} \} \mid \sum_{n=1}^{\infty} |x_{n}|^{p} \lt \infty \right\}
\| f \|_{p} = 0 \implies f = 0
almost everywhere \iff f = 0
since \mu(A) \gt 0 \; \forall A \neq \emptyset
V \setminus \sim = V