8.9 KiB
lecture, date
lecture | date |
---|---|
15 | 2025-03-06 |
Lebesgue's Monotone Convergence Theorem
Say X
has a Measure \mu
, and let f_{n} : X \to [0, \infty]
be Measurable and f_{1} \leq f_{2} \leq f_{3} \leq \dots
.
Then \int f_{m} \, d\mu \to \int \lim_{ n \to \infty } f_{n} \, d\mu
as m \to \infty
.
[!note]- Left Integral:
\int f \, d\mu = \sup_{0 \leq s \leq f} \int s \, d\mu
Right Integral:
\lim_{ m \to \infty } \int f_{m} \, d\mu = \int \lim_{ m \to \infty } f_{m} \, d\mu
Proof
Note that f \equiv \lim_{ n \to \infty }f_{n} : X \to [0, \infty]
is a Measurable function as
[!note]-
\equiv
is Pointwise- To make
[0, \infty]
, you can do "$[0, a\rangle, \langle a, b \rangle, \langle b, \infty]$"
f^{-1}([0, a\rangle) = \cap_{n=1}^{\infty} \underbrace{f_{n}^{-1}([0, a \rangle)}_{\text{Measurable}}
[!note]- More on the right, measurable, function
x \in X
such thatf(x) \lt a
\implies f_{n}(x) \leq f(x) < a\ \forall n
f_{n}(x) \lt a\ \forall n
\implies f(x) < a
Let b \equiv \lim_{ n \to \infty } \int f_{n} \, d\mu \leq \int f \, d\mu
as f_{n} \leq f
.
Let 0 \leq s \leq f
, s
Measurable Simple Function, and c \in \langle 0, 1 \rangle
.
Let A_{n} = \{ x \in X \, | \, c \times s(x) \leq f_{n}(x) \} = (\underbrace{f_{n} - cs}_{measurable function})^{-1}(\underbrace{[0, \infty]}_{open})
.
Then A_{1} \subset A_{2} \subset A_{3} \subset \dots
Measurable, and \cup_{n} A_{n} \overbrace{=}^{\text{(*)}} X
[!note] Continuing (*) Say
x \in X
. Iff(x) = 0
, thenx \in A_{1}
. Iff(x) \gt 0
, thenc \times s(x) \lt f(x)
, soc \times s(x) \lt f_{n}(x)
for somen
, andx \in A_{n}
.By the previous two lemmas, we have
b \geq \lim_{ n \to \infty } \int_{A_{n}} f_{n} \, d\mu \geq \lim_{ n \to \infty } c \times \int_{A_{n}} s \, d\mu
[!note]- Note on the
A_{n}
\int_{A} \subset \int_{X}
A \subset X
= c \lim_{ n \to \infty } \int_{A_{n}} s \, d\mu \overbrace{=}^{\text{2 lemmas}} c \times \int_{\cup A_{n}} s \, d\mu = c \times \int s \, d\mu
, sob \geq c \times \int f \, d\mu
andb \geq \int f \, d\mu
[!info]- Reminder of the two lemmas
A \mapsto \int_{A} s \, d\mu
Measure (s = 1 \implies \int_{A} s \, d\mu = \mu(A)
)- For any measure
\nu
andA_{1} \subset A_{2} \subset \dots
Measurable\implies \nu(\cup A_{n}) = \lim_{ n \to \infty } \nu(A_{n})
QED.
Corollary - Fatou's Lemma
Defined in the lecture here: Fatou's Lemma
[!info] Definition Have Measure
\mu
onX
, andf_{n} : X \to [0, \infty]
Measurable. Then\int \lim_{ n \to \infty } \inf f_{n} \, d\mu \le \lim_{ n \to \infty } \inf \int f_{n} \, d\mu
Proof
Use Lebesgue's Monotone Convergence Theorem on g_{m} = \inf_{n \geq m} f_{n}
.
g_{1} \leq g_{2} \leq \dots
are Measurable functions.
QED
Lebesgue's Dominated Convergence Theorem
(Also defined Lebesgue's Dominated Convergence Theorem, it's the same thing)
Let g
be a real function on X
.
Define g^{+} = \max \{ g, 0 \}
, g^{-} = -\min \{ g, 0 \}
.
Then g = g^{+} - g^{-}
and g^{\pm} \geq 0
.
[!example]- !
%%Drawing 2025-03-06 11.57.37.excalidraw.md, and the Drawing 2025-03-06 11.57.37.excalidraw.light.svg%%
Definition
Given Measure \mu
on X
.
Define L'(\mu) = \left\{ f : X \to \mathbb{C}\ \text{measurable and}\ \int |f| \, d\mu \lt \infty \right\}
.
Define integral for f \in L'(\mu)
by \int f \, d\mu \equiv \int (\mathrm{Re}f)^{+} \, d\mu - \int (\mathrm{Re}f)^{-} \, d\mu + i \int (\mathrm{Im} f)^{+} \, d\mu - i \int (\mathrm{Im} f)^{-} \, d\mu
.
Use f = \mathrm{Re} f + i \mathrm{Im} f = (\mathrm{Re} f)^{+} - (\mathrm{Re} f)^{-} + i((\mathrm{Im} f)^{+} - (\mathrm{Im} f)^{-})
.
The integral definition makes sense as each integral on the RHS is finite.
((\mathrm{Re} f)^{+} \leq |f|
)
Lemma
Given Measure f : X \to [0, \infty]
.
Then \exists
Measurable Simple Function s_{n}
such that
0 \leq s_{1} \leq s_{2} \leq \dots \leq f
\lim_{ n \to \infty } s_{n} = f
Pointwise
Proof
Define h_{n} : [0, \infty] \to [0, \infty \rangle
by
!
%%Drawing 2025-03-06 12.14.05.excalidraw.md, and the Drawing 2025-03-06 12.14.05.excalidraw.light.svg%%
!
%%Drawing 2025-03-06 12.16.07.excalidraw.md, and the Drawing 2025-03-06 12.16.07.excalidraw.light.svg%%
Continue like this.
!
%%Drawing 2025-03-06 12.23.12.excalidraw.md, and the Drawing 2025-03-06 12.23.12.excalidraw.light.svg%%
Have 0\leq h_{1} \leq h_{2} \leq \dots \leq h_{n} \to l\ \text{as}\ n \to \infty
.
!
%%Drawing 2025-03-06 12.24.31.excalidraw.md, and the Drawing 2025-03-06 12.24.31.excalidraw.light.svg%%
Set s_{n} = h_{n} \circ f
.
!
%%Drawing 2025-03-06 12.25.26.excalidraw.md, and the Drawing 2025-03-06 12.25.26.excalidraw.light.svg%%
Exercise part of the session.
These exercises are from Exercise 8.
Question 3
Prove \mu(A) \leq \mu(B)
when A \subset B
Proof
Have B = A \cup (\underbrace{A^{\complement} \cap B}_{B \setminus A})
, so
[!example]- What this set looks like !
%%Drawing 2025-03-06 13.17.23.excalidraw.md, and the Drawing 2025-03-06 13.17.23.excalidraw.light.svg%%
\mu(B) = \mu(A) + \underbrace{\mu(B \setminus A)}_{\geq 0}
\implies \mu(B) >+ \mu(A)
.
Question 4
Show that if X
has a $\sigma$Sigma-Algebra and f : X \to Y
set. Then the collection N
of subsets A \subset Y
such that f^{-1}(A)
Measurable, is a $\sigma$Sigma-Algebra.
N \equiv \{ A \subset Y \, | \, f^{-1}(A) \in M \}
prove that N
is a $\sigma$Sigma-Algebra.
Proof
- Have
\emptyset \in N
sincef^{-1}(\emptyset) = \emptyset \in M
. - If
A \in N
, thenf^{-1}(A) \in M
, sof^{-1}(A)^{\complement} \in M = f^{-1}(A^{\complement}) \implies A^{\complement} \in N
. - If
A_{n} \in N
, thenf^{-1}(A_{n} \in M)
, sof^{-1}(\cup A_{n}) = \cup f^{-1}(A_{n}) \in M
, so\cup A_{n} \in N
.
A question I don't know the number of
Say f : X \to Y
and they are Topological Space.
Show that if f
is Measurable, then f^{-1}(A)
is Borel Measurable for any Borel Sets A \subset Y
.
Proof
Consider N = \{ A \subset Y \, | \, f^{-1}(A)\ \text{Borel} \}
. This is a $\sigma$Sigma-Algebra.
[!example]- !
%%Drawing 2025-03-06 13.41.17.excalidraw.md, and the Drawing 2025-03-06 13.41.17.excalidraw.light.svg%%
It contains all the Open Sets in Y
since f
is Measurable and then f^{-1}(V)
is Borel Measurable for V
Open Sets.
Hence N
contains all the Borel Sets in Y
. If A
is Borel Sets, then A \in N
, so f^{-1}(A)
is Borel Sets. (Note: not sure if on this if the "Borel"s are about them being Borel sets or Borel measurable)
Question 5
X
with $\sigma$Sigma-Algebra M
.
f: X \to [0, \infty]
is Measurable \iff f^{-1}(\langle a, \infty]) \in M,\ \forall a \gt 0
.
Proof
\Rightarrow
"Obvious".
\Leftarrow
In [0, \infty]
Ball are [0, a\rangle
, \langle a, \infty ]
, [0, \infty]
, or \langle a, b \rangle
for a, b \in \mathbb{R}
.
Any open set in [0, \infty]
is a Countable union of these "building blocks".
Checking they belong to M
:
[0, a]
[0, b\rangle \cap \langle a, \infty = \langle a, b \rangle
[0, a \rangle = \cup_{n=1}^{\infty}\left[ 0, a-\frac{1}{n} \right]
QED.
f_{n} : X \to [0, \infty]
is Measurable
f \equiv \sup f_{n}
is Measurable
[!note] Can also use Infimum instead
\inf f_{n} = -\sup(-f_{n})
Now need to check if f^{-1}(\langle a, \infty ])
is Measurable and is in M
f^{-1}(\langle a, \infty ]) = \{ x \in X \, | \, f(x) \gt a \}
= \cup_{n}f_{n}^{-1}(\langle a, \infty ]) \in M
Why is the set and the union both the same?
\cup_{n} \{ x \in X \, | \, f_{n}(x) \gt a \} = \{ x \in X \, | \, f_{n}(x) \gt a\ \forall n \}