Anthony Berg 53bc9d5341
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s
Quartz sync: Mar 3, 2025, 12:08 PM
2025-03-03 12:08:25 +01:00

8 lines
502 B
Markdown

# Definition
A $\sigma$-algebra in a set $X$ is a collection of subsets, so called measurable sets, of $X$ such that (the requirements are):
1. $X \in M$
2. $A \in M \implies A^{\complement} \in M$ ($A^{\complement} \equiv X \setminus A$) ($X^{\complement} = \emptyset \in M$)
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
# Related Terminologies/Functions
- [[Measurable]]
- [[Measure]]