Anthony Berg d5e48ae3a7
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 1m5s
Quartz sync: Mar 10, 2025, 12:16 PM
2025-03-10 12:16:34 +01:00

12 lines
503 B
Markdown

# Definition
Have [[Measure|measure]] $\mu$ on $X$, and $f_{n} : X \to [0, \infty]$ [[Measurable|measurable]]. Then $\int \lim_{ n \to \infty } \inf f_{n} \, d\mu \le \lim_{ n \to \infty } \inf \int f_{n} \, d\mu$
> [!info] What is $\lim\inf$?
> Definition of [[Infimum|infimum]] (it is basically the opposite of a [[Supremum|supremum]]).
>
> $\{ x_{n} \} \subset [0, \infty]$
> $\lim_{ n \to \infty }\inf x_{n} = \sup_{m}\inf_{n \geq m} x_{n}$
>
> $\inf_{n \geq m} = y_{m} \leq y_{m+1} \leq \dots$