generated from smyalygames/quartz
Quartz sync: Mar 3, 2025, 12:08 PM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s
This commit is contained in:
@@ -0,0 +1 @@
|
||||
**Borel $\sigma$-algebra** on a [[Topological Space|topological space]] $X$ is the one generated by $\tau$.
|
||||
@@ -1,8 +1,8 @@
|
||||
# Definition
|
||||
A $\sigma$-algebra in a set $X$ is a collection of subsets, so called measurable sets, of $X$ such that (the requirements are):
|
||||
1. $X \in M$
|
||||
2. $A \in M \implies A^{\complement} \in M$ ($X^{\complement} = \emptyset \in M$)
|
||||
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
|
||||
2. $A \in M \implies A^{\complement} \in M$ ($A^{\complement} \equiv X \setminus A$) ($X^{\complement} = \emptyset \in M$)
|
||||
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
|
||||
# Related Terminologies/Functions
|
||||
- [[Measurable]]
|
||||
- [[Measure]]
|
||||
10
content/Definitions/Measure Theory/Simple Function.md
Normal file
10
content/Definitions/Measure Theory/Simple Function.md
Normal file
@@ -0,0 +1,10 @@
|
||||
A **simple function** on $X$ is a function $s : X \to \mathbb{R}$ of the form $s = \Sigma_{i=1}^{n} a_{i} \times X_{a_{i}}$ for pairwise disjoint $A_{i} \subset X$ and distinct real numbers $a_{i}$
|
||||
|
||||
$X_{A}(x) = \begin{cases}1 & \text{If}\ x \in A\\ 0 & \text{If}\ x \notin A\end{cases}$
|
||||
|
||||
> [!note]
|
||||
> If $X$ has $M$ then: $s$ is [[Measurable|measurable]] $\iff$ all $A_{i}$ are [[Measurable|measurable]]
|
||||
>
|
||||
> $A_{i} = s^{-1}(\{ a_{i} \}) = s^{-1}(\mathbb{R} \setminus \{ a_{i} \})^{\complement}$
|
||||
|
||||
If we have a [[Measure|measure]] $\mu$ on $X$, define $\int_{A} s \, d\mu \equiv \Sigma_{i=1}^{n} a_{i} \times \mu (A \cap A_{i})$ for $A \in M$ (they are all $\in [0, \infty])$.
|
||||
Reference in New Issue
Block a user