Quartz sync: Mar 3, 2025, 12:08 PM
All checks were successful
/ Deploy to Cloudflare Pages (push) Successful in 2m54s

This commit is contained in:
Anthony Berg
2025-03-03 12:08:25 +01:00
parent 8d6036292d
commit 53bc9d5341
118 changed files with 1596 additions and 647 deletions

View File

@@ -0,0 +1 @@
**Borel $\sigma$-algebra** on a [[Topological Space|topological space]] $X$ is the one generated by $\tau$.

View File

@@ -1,8 +1,8 @@
# Definition
A $\sigma$-algebra in a set $X$ is a collection of subsets, so called measurable sets, of $X$ such that (the requirements are):
1. $X \in M$
2. $A \in M \implies A^{\complement} \in M$ ($X^{\complement} = \emptyset \in M$)
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
2. $A \in M \implies A^{\complement} \in M$ ($A^{\complement} \equiv X \setminus A$) ($X^{\complement} = \emptyset \in M$)
3. $A_{n} \in M \implies \cup^{\infty}_{n=1} A_{n} \in M$ ($\implies \cap^{\infty}_{n=1} A_{n} = (\cup^{\infty}_{n=1}A^{\complement})^{\complement} \in M)$)
# Related Terminologies/Functions
- [[Measurable]]
- [[Measure]]

View File

@@ -0,0 +1,10 @@
A **simple function** on $X$ is a function $s : X \to \mathbb{R}$ of the form $s = \Sigma_{i=1}^{n} a_{i} \times X_{a_{i}}$ for pairwise disjoint $A_{i} \subset X$ and distinct real numbers $a_{i}$
$X_{A}(x) = \begin{cases}1 & \text{If}\ x \in A\\ 0 & \text{If}\ x \notin A\end{cases}$
> [!note]
> If $X$ has $M$ then: $s$ is [[Measurable|measurable]] $\iff$ all $A_{i}$ are [[Measurable|measurable]]
>
> $A_{i} = s^{-1}(\{ a_{i} \}) = s^{-1}(\mathbb{R} \setminus \{ a_{i} \})^{\complement}$
If we have a [[Measure|measure]] $\mu$ on $X$, define $\int_{A} s \, d\mu \equiv \Sigma_{i=1}^{n} a_{i} \times \mu (A \cap A_{i})$ for $A \in M$ (they are all $\in [0, \infty])$.