
Testing Quick Reference Handbooks in Flight Simulators

Anthony Berg (200871682)
Supervisor: Dr Leo Freitas

14th May 2024

Preface

Abstract
This is an abstract.

Declaration
I declare that this dissertation represents my own work except where otherwise stated.

Acknowledgements
I would like to thank my supervisor Leo Freitas for supporting, guiding, and providing with areas
of improvement for me throughout the project.

i

Contents

1 Introduction 1
1.1 Scene . 1
1.2 Motivation . 1
1.3 Aim . 1
1.4 Objectives . 1

2 Background 3
2.1 Hypothesis . 3
2.2 Safety in Aviation . 3

2.2.1 History . 3
2.2.2 Checklists . 3

2.3 Formal Methods . 3
2.3.1 History . 3
2.3.2 Application . 3

2.4 Solution Stack . 3
2.4.1 Formal Model . 4
2.4.2 Checklist Tester . 4
2.4.3 Flight Simulator Plugin . 4

3 Design/Implementation 5
3.1 Components . 5
3.2 Formal Method . 5
3.3 Checklist Tester . 6

3.3.1 Designing . 6
3.3.2 Compose Multiplatform . 6
3.3.3 Storing Data . 9
3.3.4 VDMJ Wrapper . 11
3.3.5 Connecting to the Flight Simulator . 11
3.3.6 Testing . 11

3.4 Simulator Connector Plugin . 11
3.4.1 Creating Maven Package . 11
3.4.2 Submitting a Pull Request . 11

3.5 Scenarios . 11
3.6 Decisions . 11

4 Results 12
4.1 Problems Found . 12
4.2 LOC? . 12
4.3 Reflection . 12
4.4 Time Spent . 12

5 Conclusion 13
5.1 Changes . 13
5.2 Objectives . 13
5.3 What Next . 13

A Formal Model 14

ii

CONTENTS CONTENTS

References 22

iii

Chapter 1

Introduction

1.1 Scene
• Designing Emergency Checklists is difficult

• Procedures in checklists must be tested in simulators [1], which usually means trained pilots
test it, as the tests need to work consistently [2] (making sure it’s not lengthy, concise and
gets critical procedures)

• Checklists are usually carried out in high workload environments, especially emergency ones

1.2 Motivation
• Testing procedures in checklists are often neglected [1]

• There are some checklists that may not be fit for certain scenarios - e.g. ditching (water
landing) checklist for US Airways Flight 1549 assumed at least one engine was running [3],
but in this scenario, there were none

• Some checklists may make pilots ‘stuck’ - not widely implemented, could be fixed with ‘opt
out’ points. e.g. US Airways 1549, plane below 3000ft, could have skip to later in the checklist
to something like turn on APU, otherwise plane will have limited control [3].

• Checklists may take too long to carry out - Swissair 111

1.3 Aim
The goal of this project is to test checklists in Quick Reference Handbooks (QRH) for flaws that
could compromise the aircraft and making sure that the tests can be completed in a reasonable
amount of time by pilots. It is also crucial to make sure that the tests are reproducible in the same
flight conditions and a variety of flight conditions.

1.4 Objectives
1. Research current checklists that may be problematic and are testable in the QRH tester being

made

2. Implement a formal model that runs through checklists, with the research gathered to produce
an accurate test

(a) Understand the relative states of the aircraft that need to be captured
(b) Ensure that the results of the checklist procedures are consistent

3. Implement a QRH tester manager that

• Runs the formal model and reacts to the output of the formal model

1

1.4. OBJECTIVES CHAPTER 1. INTRODUCTION

• Connect to a flight simulator to run actions from the formal model
• Implement checklist procedures to be tested, run them, and get feedback on how well

the procedure ran

2

Chapter 2

Background

2.1 Hypothesis
• Checklists can be tested in a simulated environment to find flaws in checklist for things like

– Can be done in an amount of time that will not endanger aircraft
– Provides reproducible results
– Procedures will not endanger aircraft or crew further (Crew referring to Checklist Man-

ifesto with the cargo door blowout)

• Results in being able to see where to improve checklists

2.2 Safety in Aviation
2.2.1 History

• 70-80% of aviation accidents are attributed to human factors [4]

2.2.2 Checklists
• Checklists have been shown to aid in minimising human errors [2]

• However, checklists can be misleading and compromise the safety of the aircraft due to them
being either too confusing or taking too long to complete [1]

• That is why testing checklists are important to avoid these situations

2.3 Formal Methods
2.3.1 History
2.3.2 Application

2.4 Solution Stack
• There would be around 3 main components to this tester

– Formal Model
– Flight Simulator plugin
– Checklist Tester (to connect the formal model and flight simulator)

• As VDM-SL is being used, it uses VDMJ to parse the model [5]. This was a starting point
for the tech stack, as VDMJ is also open source.

• VDMJ is written in Java [5], therefore to simplify implementing VDMJ into the Checklist
Tester, it would be logical to use a Java virtual machine (JVM) language.

3

2.4. SOLUTION STACK CHAPTER 2. BACKGROUND

2.4.1 Formal Model
• There were a few ways of implementing the formal model into another application

• Some of these methods were provided by Overture [6]

– RemoteControl interface
– VDMTools API [7]

• However, both of these methods did not suit what was required as most of the documentation
for RemoteControl was designed for the Overture Tool IDE. VDMTools may have handled
the formal model differently

• The choice was to create a VDMJ wrapper, as the modules are available on Maven

2.4.2 Checklist Tester
JVM Language

• There are multiple languages that are made for or support JVMs [8]

• Requirements for language

– Be able to interact with Java code because of VDMJ
– Have Graphical User Interface (GUI) libraries
– Have good support (the more popular, the more resources available)

• The main contenders were Java and Kotlin [9]

• Kotlin [9] was the choice in the end as Google has been putting Kotlin first instead of Java.
Kotlin also requires less boilerplate code (e.g. getters and setters) [10]

Graphical User Interface

• As the tester is going to include a UI, the language choice was still important

• There are a variety of GUI libraries to consider using

– JavaFX [11]
– Swing [12]
– Compose Multiplatform [13]

• The decision was to use Compose Multiplatform in the end, due to time limitations and
having prior experience in using Flutter [14]

• Compose Multiplatform has the ability to create a desktop application and a server, which
would allow for leeway if a server would be needed

2.4.3 Flight Simulator Plugin
• There are two main choices for flight simulators that can be used for professional simulation

– X-Plane [15]
– Prepar3D [16]

• X-Plane was the choice due to having better documentation for the SDK, and a variety of
development libraries for the simulator itself

• For the plugin itself, there was already a solution developed by NASA, X-Plane Connect [17]
that is more appropriate due to the time limitations and would be more likely to be reliable
as it has been developed since 2015

4

Chapter 3

Design/Implementation

3.1 Components
Splitting up the project into multiple components has been useful for

• Aiding in planning to make the implementation more efficient

• Delegating specific work tasks

• Making the project modular, for example, allowing for a different simulator to be implemented
with minimal need to refactor other parts of the codebase

Checklist Tester Simulator Con-
nector PluginFormal Method

Flight Simulator

Figure 3.1: Abstract layout of components

Each of the components in Figure 3.1 will be covered in detail in this chapter.

3.2 Formal Method
• Formal modelling is the heart of the logic for testing checklists

• Formal model created using VDM-SL

• It allows to test that the checklists have been completed in a proper manner - and that it is
provable

• Model keeps track of

– Aircraft state
– Checklist state

• If an error were to occur in the model, this can be relayed that there was something wrong
with running the test for the checklist, such as:

– Procedure compromises integrity of aircraft
– There is not enough time to complete the procedure
– There is a contradiction with the steps of the checklist

5

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

3.3 Checklist Tester
Brief overview of what it is supposed to do...

3.3.1 Designing
• Used Figma to create a design for the application

• Allows for implementing the front end to be faster because:

– They act as a requirement for code
– You do not forget what needs to be implemented
– Keeps everything consistent
– Allows to think about making parts of the GUI modular and what components can be

reused

• Figma allows for plugins such as Material 3 colours and Material 3 components

• Figure 3.2 is the final design that will be used for the program

Limitations of Figma

• The Material 3 Components in Figma do not include features that are available in Jetpack
Compose

• In this project, the ‘Simulator Test’ at the bottom of Figure 3.2 does not include a leading
icon [18], and therefore had to be a trailing checkbox

• This was overcome by adding comments in Figma as a reminder of how the actual imple-
mentation should be like

• Another limitation is that in Figure 3.2, the title of the screen in the top app bar [19] is
not centered, and that is because the auto layout feature in Figma allows for equal spacing,
rather than having each in a set position

3.3.2 Compose Multiplatform
Setup

• Used the Kotlin Multiplatform Wizard to create projects as it allows for runtime environments
to be specified (in this case, Desktop and Server)

• Provides necessary build configurations in Gradle

• Planning what to implement important as Compose is designed to use modular components,
otherwise a nested mess would occur as Compose is designed to have Composable functions
passed in to a Composable function and therefore by design function nests will occur and
the code will be harder to read if not managed correctly. Listing 3.1 shows example of using
modular code from the Actions screen in project (with code omissions shown in comments)

• Used Voyager [20] to handle screens

• Used Koin [21] for dependency injection, to be able to get data from the database and VDMJ

– Chose to use it because of Voyager integration with Koin [22]
– Required as the application will be unresponsive when making requests to the database

and/or VDMJ
– Used asynchronous coroutines to prevent the program from being blocked

6

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

Simulator Status
737-800

Projects

Tester

Procedures

Simulator Test

Test Results

Application

Settings

About

Checklist Tester Simulator Status

Project Name

Ditching Checklist

Aircraft Type

A320

ICAO Code

Create

Create Project Simulator Status

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

New Project

Projects Simulator Status

Create Project

Welcome!

You currently have no projects...

Checklist Tester Simulator Status

Information

Procedure Name

Ditching at 1000ft

Type

Description

For loss of both engines

Actions

Type

Create

Create Procedure Simulator Status

Create Procedure

There are currently no procedures

Procedures Simulator Status

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

New Procedure

Procedures Simulator Status

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

Tests Result

Simulator Test Simulator Status

Figure 3.2: Design for the Checklist Connector GUI in Figma

7

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

1 @Composable
2 override fun Content() {
3 // Content variables...
4

5 Scaffold(
6 topBar = {/* Composable content... */},
7) {
8 Column(/* Column option parameters... */) {
9 Box(/* Box option parameters... */) {

10 LazyColumn(/* LazyColumn option parameters... */) {
11

12 item {
13 Header()
14 }
15

16 items(
17 items = inputs,
18 key = { input -> input.id }
19) { item ->
20 ActionItem(item)
21 }
22 }
23 }
24 }
25 }
26 }
27

28 @Composable
29 private fun Header() {
30 Text(text = "Edit Actions")
31 }
32

33 @Composable
34 private fun ActionItem(item: Action) {
35 Column (/* Column option parameters... */) {
36 Row(/* Row option parameters... */) {
37 Text(text = "Action ${item.step + 1}")
38

39 IconButton(/* IconButton definition parameters... */) {
40 Icon(
41 Icons.Outlined.Delete,
42 // Rest of Icon options...
43)
44 }
45 }
46

47 Row(/* Row option parameters... */) {
48 OutlinedTextField(/* TextField definition parameters... */)
49

50 OutlinedTextField(/* TextField definition parameters... */)
51 }
52

53 HorizontalDivider()
54 }
55 }

Listing 3.1: Example of modular code in Compose

8

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

3.3.3 Storing Data
• SQLDelight was used to handle the database by allowing for typesafe Kotlin APIs when

interacting with the database. Specifically chosen as it provides support for Compose Mul-
tiplatform [23]

• It only allows for queries to be written in SQL, which would allow for more complex SQL
queries if needed

• SQLite was used for the Relational Database Management System (RDBMS) as it is an
embedded database [24], meaning that the database will run in the application, rather than
running on a server, either remotely or through local containerization through something
like Docker [25], which could take more time and add complexity as it means implementing
additional dependencies

• SQLite also has 100% [26] which necessary for ensuring that the database will not cause
artefacts to the results

Designing the Database

• The database could be thought as having 2 sections

– The user inputs to control the tester, i.e. the steps a procedure contains. The tables for
these are Project, Procedure, and Action

– The test results for a procedure which are in the Test, and ActionResult tables

• The design of the database had relationships in mind as the goal was to have a detailed
tracking of statistics for each step in the procedure, hence in Figure 3.3

• A Procedure can have multiple Tests, where each Test each contains the result of how each
Action in ActionResults

• The choice of a Project was to allow for the segregation of testing different aircrafts, as each
aircraft has different cockpit layouts and different systems

Implementing into Compose Multiplatform

• Compose Multiplatform has support for different runtime environments, however as this
project was only being developed for Desktop, the JVM SQLite driver only had to be con-
sidered

• However, the functions for the database were written in the shared/commonMain module as
there may be a potential for adding Android and iOS support as it as it may be helpful run
the tests on a tablet

• A database transaction had two modules

– A class handling SQLDelight API calls only; meaning no conversion of types, which are
functions only accessible within module internally, which is located in
io.anthonyberg.connector.shared.database

– SDKs that can handle multiple tables, such as TestTransaction which handles database
calls when checklists are being tested in the application. And allows for converting
types, such as Int to Long

• The separation of these modules was to have in mind unit testing, as it will make it easier to
debug if a problem is with SQLDelight transactions are handled, or if there is a conversion
error occurring

9

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

Procedure

id

nametypedescription

createdUTCmodifiedUTC

Contains Project

nameidaircraftType

createdUTC

modifiedUTC

Contains

Action

step

id

type

goal Contains

ActionResult

id

startUTC endUTC

initState endState

Contains

Contains

Testid

startUTC

endUTC

N

1

1

N

1

N

1

N

1

N

Figure 3.3: Entity Relationship Diagram for the database in Checklist Connector

10

CHAPTER 3. DESIGN/IMPLEMENTATION 3.4. SIMULATOR CONNECTOR PLUGIN

3.3.4 VDMJ Wrapper
3.3.5 Connecting to the Flight Simulator
3.3.6 Testing

3.4 Simulator Connector Plugin
3.4.1 Creating Maven Package

• XPC package is not published on a public Maven repository

• There has been a pull request that was merged to the develop branch that provides Maven
POMs [27]. However, the maintainer for the project, at the time, did not have enough time
to figure out the process of publishing the package to a Maven repository [28]

• Therefore, had to find an alternative way to implement

• Jitpack [29]

– In theory, simple to publish a repository, all that is required is a GitHub repository
and searching if one has already been created on JitPack or build and publish a specific
version

– However, due to the structure of the XPC repository, JitPack could not locate the build
tools (Apache Maven in this case) as JitPack only searches on the root directory for the
compatible build tools

• Gradle gitRepository [30]

– There was not a lot of documentation
– Ambiguous on how to define directory for where the Java library is located in the Git

repository
– However, as XPC was only built with Maven, Gradle was not able add the dependency

as gitRepository() only works with Gradle builds [31]

• Resorted to using a compiled Jar file and adding the dependency to Gradle

• Not happy about that because it means maintaining it will be more difficult as it is not as
simple as just changing the version number

• Later, resorted to adding Gradle build files to XPC

• Used automatic conversion from Maven to Gradle using gradle init command [32]

• Had to add local dependencies due to how Gradle works differently

• Had to fix previous structure of Maven POM as the grouping as not good

3.4.2 Submitting a Pull Request

3.5 Scenarios
• Use a Quick Reference Handbook (QRH) to find potential list of checklists to test

• Look at previous accident reports that had an incident related to checklists and test it with
my tool to see if it will pick it up

• These previous accident reports can be good metrics to know what statistics to look out for

3.6 Decisions

11

Chapter 4

Results

4.1 Problems Found

4.2 LOC?

4.3 Reflection

4.4 Time Spent

70%

20%

Coding
Research

Figure 4.1: Time spent on sections of project

12

Chapter 5

Conclusion

5.1 Changes

5.2 Objectives

5.3 What Next

13

Appendix A

Formal Model

1 module Checklist
2 exports all
3 definitions
4
5 values
6 -- Before Start Checklist
7 -- Items in Aircraft
8 -- Flight Deck... (can't check)
9 fuel: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, false)→

);
10 pax_sign: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, →

true));
11 windows: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<ON>, →

false));
12 -- Preflight steps
13 acol: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, false)→

);
14
15 aircraft_panels: Items = {"Fuel␣Pump" |-> fuel, "Passenger␣Signs" →

|-> pax_sign , "Windows" |-> windows, "Anti␣Collision␣Lights" →
|-> acol};

16
17 -- Checklist
18 -- Flight Deck... (can't check)
19 fuel_chkl: ChecklistItem = mk_ChecklistItem("Fuel␣Pump", <SWITCH>,→

<ON>, false);
20 pax_sign_chkl: ChecklistItem = mk_ChecklistItem("Passenger␣Signs",→

<SWITCH>, <ON>, false);
21 windows_chkl: ChecklistItem = mk_ChecklistItem("Windows", <SWITCH→

>, <ON>, false);
22 -- Preflight steps
23 acol_chkl: ChecklistItem = mk_ChecklistItem("Anti␣Collision␣Lights→

", <SWITCH>, <ON>, false);
24
25 before_start_procedure: Procedure = [fuel_chkl , pax_sign_chkl , →

windows_chkl , acol_chkl];
26
27 aircraft = mk_Aircraft(aircraft_panels , before_start_procedure);
28 types
29 --@doc The dataref name in X-Plane
30 Dataref = seq1 of char;
31
32 -- Aircraft

14

APPENDIX A. FORMAL MODEL

33
34 -- Switches
35 --@doc The state a switch can be in
36 SwitchState = <OFF> | <MIDDLE> | <ON>;
37
38 --@LF why have a type kist as a rename?
39 ItemState = SwitchState; --@TODO | Button | ...
40
41 --@doc A switch, with the possible states it can be in, and the →

state that it is in
42 Switch ::
43 position : SwitchState
44 middlePosition : bool
45 inv s ==
46 (s.position = <MIDDLE> => s.middlePosition);
47
48 -- Knob
49 Knob ::
50 position : nat
51 --@LF how can a state be an int? perhaps a proper type (i..e. →

subset of int range or a union?)
52 states : set1 of nat
53 inv k ==
54 k.position in set k.states;
55
56 Lever = nat
57 inv t == t <= 100;
58
59 Throttle ::
60 thrust: Lever
61 reverser: Lever
62 inv t ==
63 (t.reverser > 0 <=> t.thrust = 0);
64
65 --@doc The type that the action of the button is
66 ItemType = <SWITCH> | <KNOB> | <BUTTON> | <THROTTLE >;
67
68 --@doc The unique switch/knob/etc of that aircraft
69 ObjectType = Switch | Knob | Throttle;
70 ItemObject ::
71 type : ItemType
72 object : ObjectType
73 inv mk_ItemObject(type, object) ==
74 cases type:
75 <SWITCH> -> is_Switch(object),
76 <KNOB> -> is_Knob(object),
77 <THROTTLE>-> is_Throttle(object),
78 --<BUTTON> -> true
79 others -> true
80 end;
81
82 --@doc Contains each ItemObject in the Aircraft , e.g. Fuel Pump →

switch
83 Items = map Dataref to ItemObject;
84
85 --@doc Contains the panels (all the items in the aircraft) and the→

procedure
86 Aircraft ::

15

APPENDIX A. FORMAL MODEL

87 items : Items
88 procedure : Procedure
89 inv mk_Aircraft(i, p) ==
90 ({ x.procedure | x in seq p } subset dom i);
91
92 -- Checklist
93
94 --@doc Item of a checklist , e.g. Landing gear down
95 ChecklistItem ::
96 --@LF again, empty string here doesn't make sense.
97 procedure : Dataref
98 type : ItemType
99 --TODO Check is not only SwitchState

100 check : SwitchState
101 checked : bool;
102
103 --@doc This is an item in the aircraft that complements the item →

in the procedure
104 ItemAndChecklistItem ::
105 item : ItemObject
106 checklistItem: ChecklistItem
107 inv i == i.item.type = i.checklistItem.type;
108
109 --@doc A section of a checklist , e.g. Landing Checklist
110 --@LF shouldn't this be non-empty? What's the point to map a →

checklist name to an empty procedure? Yes.
111 Procedure = seq1 of ChecklistItem
112 inv p ==
113 --@LF the "trick" for "false not in set S" is neat. It →

forces a full evaluation , rather than short circuited →
(i.e. stops at first false).

114 -- I presume this was intended.
115 false not in set {
116 let first = p(x-1).checked, second = p(x).checked in
117 --@LF boolean values don't need equality check
118 second => first--((first = true) and (second = →

false))
119 | x in set {2,...,len p}};
120
121 functions
122 -- PROCEDURES
123 --@doc Finds the index of the next item in the procedure that →

needs to be completed
124 procedure_next_item_index: Procedure -> nat1
125 procedure_next_item_index(p) ==
126 hd [x | x in set {1,...,len p} & not p(x).checked]--p(x).→

checked = false]
127 pre
128 -- Checks procedure has not already been completed
129 not procedure_completed(p)--procedure_completed(p) = false
130 post
131 -- Checks that the index of the item is the next one to be →

completed
132 --@LF your def is quite confusing (to me)
133 --@LF how do you know that RESULT in inds p? Well, the →

definition above okay.
134 -- but you can't know whether p(RESULT -1) will! What if →

RESULT=1? p(RESULT -1)=p(0) which is invalid!

16

APPENDIX A. FORMAL MODEL

135 (not p(RESULT).checked)
136 and
137 (RESULT > 1 => p(RESULT -1).checked)
138 --p(RESULT).checked = false
139 --and if RESULT > 1 then
140 -- p(RESULT -1).checked = true
141 --else
142 -- true
143 ;
144
145 -- --@doc Checks if all the procedures have been completed
146 -- check_all_proc_completed: Checklist -> bool
147 -- check_all_proc_completed(c) ==
148 -- false not in set { procedure_completed(c(x)) | x in set →

{1,...,len c} };
149
150 -- --@doc Gives the index for the next procedure to complete
151 -- next_procedure: Checklist -> nat1
152 -- next_procedure(c) ==
153 -- hd [x | x in set {1,...,len c} & not procedure_completed(c→

(x))]
154 -- post
155 -- RESULT <= len c;
156
157 --@doc Checks if the procedure has been completed
158 procedure_completed: Procedure -> bool
159 procedure_completed(p) ==
160 false not in set { p(x).checked | x in set {1,...,len p} };
161
162 --@doc Checks if the next item in the procedure has been completed
163 check_proc_item_complete: Procedure * Aircraft -> bool
164 check_proc_item_complete(p, a) ==
165 --@LF here you have a nice lemma to prove: →

procedure_next_item_index(p) in set inds p!
166 -- I think that's always true
167 let procItem = p(procedure_next_item_index(p)),
168 --@LF here you can't tell whether this will be true? i→

.e. procItem.procedure in set dom a.items?
169 item = a.items(procItem.procedure) in
170
171 --TODO need to be able to check for different types of →

Items
172 procItem.check = item.object.position
173 pre
174 procedure_completed(p) = false
175 --@LF perhaps add
176 --and
177 --p(procedure_next_item_index(p)).procedure in set dom a.items→

?
178 ;
179
180 --@doc Marks next item in procedure as complete
181 mark_proc_item_complete: Procedure -> Procedure
182 mark_proc_item_complete(p) ==
183 let i = procedure_next_item_index(p), item = p(i) in
184 p ++ {i |-> complete_item(item)}
185 pre
186 procedure_completed(p) = false;

17

APPENDIX A. FORMAL MODEL

187
188 --@doc Completes an item in the procedure
189 do_proc_item: ItemObject * ChecklistItem -> ItemAndChecklistItem
190 do_proc_item(i, p) ==
191 let objective = p.check,
192 checkckItem = complete_item(p) in
193 -- Checks if the item is in the objective desired by the →

checklist
194 if check_item_in_position(i, objective) then
195 mk_ItemAndChecklistItem(i, checkckItem)
196 else
197 mk_ItemAndChecklistItem(move_item(i, p.check), →

checkckItem)
198 pre
199 p.checked = false
200 post
201 -- Checks the item has been moved correctly
202 check_item_in_position(RESULT.item, p.check);
203
204 --@doc Completes a procedure step by step
205 -- a = Aircraft
206 complete_procedure: Aircraft -> Aircraft
207 complete_procedure(a) ==
208 let procedure = a.procedure in
209 mk_Aircraft(
210 a.items ++ { x.procedure |-> do_proc_item(a.items(x.→

procedure), x).item | x in seq procedure },
211 [complete_item(x) | x in seq procedure]
212)
213 pre
214 not procedure_completed(a.procedure)
215 post
216 procedure_completed(RESULT.procedure);
217
218 -- AIRCRAFT ITEMS
219 --@doc Marks ChecklistItem as complete
220 complete_item: ChecklistItem -> ChecklistItem
221 complete_item(i) ==
222 mk_ChecklistItem(i.procedure , i.type, i.check, true)
223 pre
224 i.checked = false;
225
226 --@doc Moves any type of Item
227 move_item: ItemObject * ItemState -> ItemObject
228 move_item(i, s) ==
229 -- if is_Switch(i) then (implement later)
230 let switch: Switch = i.object in
231 if check_switch_onoff(switch) and (s <> <MIDDLE >) and →

switch.middlePosition then
232 mk_ItemObject(i.type, move_switch(move_switch(→

switch, <MIDDLE >), s))
233 else
234 mk_ItemObject(i.type, move_switch(switch, s))
235 pre
236 wf_item_itemstate(i, s)
237 and not check_item_in_position(i, s);
238 -- and wf_switch_move(i.object, s);
239

18

APPENDIX A. FORMAL MODEL

240 --@doc Moves a specific switch in the aircraft
241 move_switch: Switch * SwitchState -> Switch
242 move_switch(i, s) ==
243 mk_Switch(s, i.middlePosition)
244 pre
245 wf_switch_move(i, s)
246 post
247 RESULT.position = s;
248
249 --@doc Checks if the switch is in the on or off position
250 check_switch_onoff: Switch -> bool
251 check_switch_onoff(s) ==
252 let position = s.position in
253 position = <OFF> or position = <ON>
254 post
255 -- Only one can be true at a time
256 -- If the switch is in the middle position , then RESULT cannot→

be true
257 -- If the switch is in the on/off position , then the RESULT →

will be true
258 (s.position = <MIDDLE >) <> RESULT;
259
260 --@doc Checks if the item is already in position for the desired →

state for that item
261 check_item_in_position: ItemObject * ItemState -> bool
262 check_item_in_position(i, s) ==
263 -- if is_Switch(i) then (implement later)
264 i.object.position = s
265 pre
266 wf_item_itemstate(i,s);
267
268 --@doc Checks if the Item.object is the same type for the →

ItemState
269 wf_item_itemstate: ItemObject * ItemState -> bool
270 wf_item_itemstate(i, s) ==
271 (is_Switch(i.object) and is_SwitchState(s) and i.type = <→

SWITCH >)
272 --TODO check that the item has not already been completed →

before moving item
273 --TODO add other types of Items
274 ;
275
276 --@doc Checks if the move of the Switch is a valid
277 wf_switch_move: Switch * SwitchState -> bool
278 wf_switch_move(i, s) ==
279 -- Checks that the switch not already in the desired state
280 i.position <> s and
281 -- The switch has to move one at a time
282 -- Reasoning for this is that some switches cannot be moved in→

one quick move
283 if i.middlePosition = true then
284 -- Checks moving the switch away from the middle position
285 (i.position = <MIDDLE> and s <> <MIDDLE >)
286 -- Checks moving the siwtch to the middle position
287 <> (check_switch_onoff(i) = true and s = <MIDDLE >)
288 else
289 check_switch_onoff(i) and s <> <MIDDLE >;
290

19

APPENDIX A. FORMAL MODEL

291
292 end Checklist
293
294 /*
295 //@LF always a good idea to run "qc" on your model. Here is its output→

. PO 21 and 22 show a problem.
296 //@LF silly me, this was my encoding with the cases missing one →

pattern :-). I can see yours has no issues. Good.
297
298 > qc
299 PO #1, PROVABLE by finite types in 0.002s
300 PO #2, PROVABLE by finite types in 0.0s
301 PO #3, PROVABLE by finite types in 0.0s
302 PO #4, PROVABLE by finite types in 0.0s
303 PO #5, PROVABLE by finite types in 0.0s
304 PO #6, PROVABLE by finite types in 0.0s
305 PO #7, PROVABLE by finite types in 0.0s
306 PO #8, PROVABLE by finite types in 0.0s
307 PO #9, PROVABLE by finite types in 0.001s
308 PO #10, PROVABLE by finite types in 0.001s
309 PO #11, PROVABLE by direct (body is total) in 0.003s
310 PO #12, PROVABLE by witness s = mk_Switch(<MIDDLE>, true) in 0.001s
311 PO #13, PROVABLE by direct (body is total) in 0.001s
312 PO #14, PROVABLE by witness k = mk_Knob(1, [-2]) in 0.0s
313 PO #15, PROVABLE by direct (body is total) in 0.0s
314 PO #16, PROVABLE by witness t = 0 in 0.0s
315 PO #17, PROVABLE by direct (body is total) in 0.001s
316 PO #18, PROVABLE by witness t = mk_Throttle(0, 0) in 0.001s
317 PO #19, PROVABLE by direct (body is total) in 0.002s
318 PO #20, PROVABLE by witness i = mk_ItemObject(<KNOB>, mk_Knob(1, [-1])→

) in 0.002s
319 PO #21, FAILED in 0.002s: Counterexample: type = <BUTTON>, object = →

mk_Knob(1, [-1])
320 Causes Error 4004: No cases apply for <BUTTON> in 'Checklist' (formal/→

checklist.vdmsl) at line 119:13
321 ----
322 ItemObject':␣total␣function␣obligation␣in␣'Checklist'␣(formal/→

checklist.vdmsl)␣at␣line␣118:13
323 (forall␣mk_ItemObject'(type, object):ItemObject'!␣&
324 ␣␣is_(inv_ItemObject'(mk_ItemObject'!(type,␣object)),␣bool))
325
326 PO␣#22,␣FAILED␣by␣direct␣in␣0.005s:␣Counterexample:␣type␣=␣<BUTTON>
327 PO␣#23,␣PROVABLE␣by␣witness␣type␣=␣<KNOB>,␣object␣=␣mk_Knob(1,␣[-1])␣→

in␣0.002s
328 PO␣#24,␣PROVABLE␣by␣direct␣(body␣is␣total)␣in␣0.001s
329 PO␣#25,␣PROVABLE␣by␣witness␣i␣=␣mk_ItemAndChecklistItem(mk_ItemObject→

(<KNOB>,␣mk_Knob(1,␣[-1])),␣mk_ChecklistItem([],␣<KNOB>,␣<MIDDLE>,→
␣true))␣in␣0.001s

330 PO␣#26,␣MAYBE␣in␣0.003s
331 PO␣#27,␣MAYBE␣in␣0.003s
332 PO␣#28,␣MAYBE␣in␣0.002s
333 PO␣#29,␣PROVABLE␣by␣witness␣p␣=␣[mk_ChecklistItem([],␣<BUTTON>,␣<→

MIDDLE>,␣true)]␣in␣0.001s
334 PO␣#30,␣MAYBE␣in␣0.002s
335 PO␣#31,␣MAYBE␣in␣0.001s
336 PO␣#32,␣MAYBE␣in␣0.003s
337 PO␣#33,␣MAYBE␣in␣0.002s
338 PO␣#34,␣MAYBE␣in␣0.001s

20

APPENDIX A. FORMAL MODEL

339 PO␣#35,␣MAYBE␣in␣0.002s
340 PO␣#36,␣MAYBE␣in␣0.009s
341 PO␣#37,␣MAYBE␣in␣0.008s
342 PO␣#38,␣MAYBE␣in␣0.007s
343 PO␣#39,␣MAYBE␣in␣0.009s
344 PO␣#40,␣MAYBE␣in␣0.002s
345 PO␣#41,␣MAYBE␣in␣0.001s
346 PO␣#42,␣MAYBE␣in␣0.001s
347 PO␣#43,␣MAYBE␣in␣0.002s
348 PO␣#44,␣MAYBE␣in␣0.002s
349 PO␣#45,␣MAYBE␣in␣0.003s
350 PO␣#46,␣MAYBE␣in␣0.002s
351 PO␣#47,␣MAYBE␣in␣0.002s
352 PO␣#48,␣MAYBE␣in␣0.001s
353 PO␣#49,␣MAYBE␣in␣0.001s
354 PO␣#50,␣MAYBE␣in␣0.0s
355 PO␣#51,␣MAYBE␣in␣0.0s
356 PO␣#52,␣MAYBE␣in␣0.005s
357 PO␣#53,␣PROVABLE␣by␣trivial␣p␣in␣set␣(dom␣checklist)␣in␣0.001s
358 PO␣#54,␣MAYBE␣in␣0.006s
359 PO␣#55,␣MAYBE␣in␣0.0s
360 PO␣#56,␣MAYBE␣in␣0.001s
361 PO␣#57,␣MAYBE␣in␣0.001s
362 PO␣#58,␣MAYBE␣in␣0.001s
363 PO␣#59,␣MAYBE␣in␣0.001s
364 PO␣#60,␣MAYBE␣in␣0.001s
365 PO␣#61,␣MAYBE␣in␣0.001s
366 PO␣#62,␣MAYBE␣in␣0.0s
367 PO␣#63,␣PROVABLE␣by␣finite␣types␣in␣0.001s
368 PO␣#64,␣PROVABLE␣by␣finite␣types␣in␣0.001s
369 PO␣#65,␣PROVABLE␣by␣finite␣types␣in␣0.001s
370 PO␣#66,␣MAYBE␣in␣0.001s
371 >
372 */

21

References

[1] Immanuel Barshi, Robert Mauro, Asaf Degani et al. Designing Flightdeck Procedures. eng.
Ames Research Center, Nov. 2016. url: https://ntrs.nasa.gov/citations/20160013263.

[2] Atul Gawande. The Checklist Manifesto: How To Get Things Right. Main Edition. Profile
Books, July 2010. isbn: 9781846683145.

[3] National Tranportation Safety Board. Loss of Thrust in Both Engines After Encountering
a Flock of Birds and Subsequent Ditching on the Hudson River. Technical Report PB2010-
910403. May 2010. url: https://www.ntsb.gov/investigations/Pages/DCA09MA026.
aspx.

[4] William R. Knecht and Michael Lenz. Causes of General Aviation Weather-Related, Non-
Fatal Incidents: Analysis Using NASA Aviation Safety Reporting System Data. Tech. rep.
DOT/FAA/AM-10/13. FAA Office of Aerospace Medicine Civil Aerospace Medical Institute,
Sept. 2010.

[5] Nick Battle. VDMJ. url: https://github.com/nickbattle/vdmj (visited on 21/04/2024).
[6] Peter Gorm Larsen, Kenneth Lausdahl, Peter Jørgensen et al. Overture VDM-10 Tool Sup-

port: User Guide. TR-2010-02. Apr. 2013. Chap. 16, pp. 81–98. url: https://raw.github.
com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/
OvertureIDEUserGuide.pdf.

[7] Kyushu University. The VDM Toolbox API. Version 1.0. 2016. url: https://github.com/
vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf.

[8] Raoul-Gabriel Urma. ‘Alternative Languages for the JVM’. In: Java Magazine (July 2014).
url: https://www.oracle.com/technical- resources/articles/java/architect-
languages.html (visited on 05/05/2024).

[9] JetBrains s.r.o. Kotlin Programming Language. url: https://kotlinlang.org/ (visited on
21/04/2024).

[10] Google LLC. Kotlin and Android | Android Developers. url: https://developer.android.
com/kotlin (visited on 21/04/2024).

[11] OpenJFX. JavaFX. url: https://openjfx.io/ (visited on 21/04/2024).
[12] FormDev Software GmbH. FlatLaf - Flat Look and Feel | FormDev. url: https://www.

formdev.com/flatlaf/ (visited on 21/04/2024).
[13] JetBrains s.r.o. Compose Multiplatform UI Framework | JetBrains | JetBrains: Developer

Tools for Professionals and Teams. url: https://www.jetbrains.com/lp/compose-
multiplatform/ (visited on 21/04/2024).

[14] Google LLC. Flutter - Build apps for any screen. url: https://flutter.dev/ (visited on
21/04/2024).

[15] Laminar Research. X-Plane | The world’s most advanced flight simulator. url: https://
www.x-plane.com/ (visited on 21/04/2024).

[16] Lockheed Martin Corporation. Prepar3D – Next Level Training. World class simulation. Be
ahead of ready with Prepar3D. url: https://www.prepar3d.com/ (visited on 21/04/2024).

[17] NASA Ames Research Center Diagnostics and Prognostics Group. X-Plane Connect. url:
https://github.com/nasa/XPlaneConnect (visited on 21/04/2024).

[18] Google LLC. Lists – Material Design 3. url: https://m3.material.io/components/
lists/guidelines (visited on 13/05/2024).

22

https://ntrs.nasa.gov/citations/20160013263
https://www.ntsb.gov/investigations/Pages/DCA09MA026.aspx
https://www.ntsb.gov/investigations/Pages/DCA09MA026.aspx
https://github.com/nickbattle/vdmj
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://github.com/vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf
https://github.com/vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf
https://www.oracle.com/technical-resources/articles/java/architect-languages.html
https://www.oracle.com/technical-resources/articles/java/architect-languages.html
https://kotlinlang.org/
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://openjfx.io/
https://www.formdev.com/flatlaf/
https://www.formdev.com/flatlaf/
https://www.jetbrains.com/lp/compose-multiplatform/
https://www.jetbrains.com/lp/compose-multiplatform/
https://flutter.dev/
https://www.x-plane.com/
https://www.x-plane.com/
https://www.prepar3d.com/
https://github.com/nasa/XPlaneConnect
https://m3.material.io/components/lists/guidelines
https://m3.material.io/components/lists/guidelines

REFERENCES REFERENCES

[19] Google LLC. Top app bar – Material Design 3. url: https://m3.material.io/components/
top-app-bar/guidelines (visited on 13/05/2024).

[20] Adriel Café. Overview | Voyager. url: https : / / voyager . adriel . cafe/ (visited on
13/05/2024).

[21] Koin and Kotzilla. Koin - The pragmatic Kotlin Injection Framework - developed by Kotzilla
and its open-source contributors. url: https://insert-koin.io/ (visited on 13/05/2024).

[22] Adriel Café. Koin integration | Voyager. url: https://voyager.adriel.cafe/screenmodel/
koin-integration (visited on 13/05/2024).

[23] Square, Inc. Overview - SQLDelight. Version 2.0.2. url: https://cashapp.github.io/
sqldelight/2.0.2/ (visited on 14/05/2024).

[24] Hipp, Wyrick & Company, Inc. About SQLite. url: https://www.sqlite.org/about.html
(visited on 14/05/2024).

[25] Docker Inc. What is a Container? | Docker. url: https://www.docker.com/resources/
what-container/ (visited on 14/05/2024).

[26] Hipp, Wyrick & Company, Inc. How SQLite Is Tested. url: https://www.sqlite.org/
testing.html (visited on 14/05/2024).

[27] Mike Frizzell. Maven Folder Structure Re-org by frizman21 · Pull Request #227 · nasa/X-
PlaneConnect. url: https://github.com/nasa/XPlaneConnect/pull/227 (visited on
13/05/2024).

[28] Jason Watkins. Publish Java library to maven repo · Issue #223 · nasa/XPlaneConnect -
Comment. url: https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-
870819396 (visited on 13/05/2024).

[29] JitPack. JitPack | Publish JVM and Android libraries. url: https://jitpack.io/ (visited
on 13/05/2024).

[30] Gradle Inc. gitRepository. url: https://docs.gradle.org/current/kotlin-dsl/gradle/
org.gradle.vcs/-source-control/git-repository.html (visited on 13/05/2024).

[31] Jendrik Johannes. Git repository at <url> did not contain a project publishing the specified
dependency. url: https://discuss.gradle.org/t/git- repository- at- url- did-
not-contain-a-project-publishing-the-specified-dependency/34019/2 (visited on
13/05/2024).

[32] Gradle Inc. Migrating Builds From Apache Maven. Version 8.7. 2023. url: https://docs.
gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_
conversion.

[33] Barbara Burian. ‘Design Guidance for Emergency and Abnormal Checklists in Aviation’. In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50 (Oct. 2006).
doi: 10.1177/154193120605000123.

[34] Quinn Kennedy, Joy Taylor, Daniel Heraldez et al. ‘Intraindividual Variability in Basic Re-
action Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance’. In: The
Journals of Gerontology: Series B 68.4 (Oct. 2012), pp. 487–494. issn: 1079-5014. doi:
10.1093/geronb/gbs090. eprint: https://academic.oup.com/psychsocgerontology/
article-pdf/68/4/487/1520662/gbs090.pdf.

[35] Civil Aviation Authority. Aircraft Emergencies: Considerations for air traffic controllers.
CAP745. Mar. 2005. url: https://www.caa.co.uk/cap745.

[36] The Overture Project. The Vienna Development Method. url: https://www.overturetool.
org/method/ (visited on 23/02/2024).

[37] Google LLC. Jetpack Compose UI App Development Toolkit - Android Developers. url:
https://developer.android.com/develop/ui/compose (visited on 21/04/2024).

23

https://m3.material.io/components/top-app-bar/guidelines
https://m3.material.io/components/top-app-bar/guidelines
https://voyager.adriel.cafe/
https://insert-koin.io/
https://voyager.adriel.cafe/screenmodel/koin-integration
https://voyager.adriel.cafe/screenmodel/koin-integration
https://cashapp.github.io/sqldelight/2.0.2/
https://cashapp.github.io/sqldelight/2.0.2/
https://www.sqlite.org/about.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://github.com/nasa/XPlaneConnect/pull/227
https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-870819396
https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-870819396
https://jitpack.io/
https://docs.gradle.org/current/kotlin-dsl/gradle/org.gradle.vcs/-source-control/git-repository.html
https://docs.gradle.org/current/kotlin-dsl/gradle/org.gradle.vcs/-source-control/git-repository.html
https://discuss.gradle.org/t/git-repository-at-url-did-not-contain-a-project-publishing-the-specified-dependency/34019/2
https://discuss.gradle.org/t/git-repository-at-url-did-not-contain-a-project-publishing-the-specified-dependency/34019/2
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion
https://doi.org/10.1177/154193120605000123
https://doi.org/10.1093/geronb/gbs090
https://academic.oup.com/psychsocgerontology/article-pdf/68/4/487/1520662/gbs090.pdf
https://academic.oup.com/psychsocgerontology/article-pdf/68/4/487/1520662/gbs090.pdf
https://www.caa.co.uk/cap745
https://www.overturetool.org/method/
https://www.overturetool.org/method/
https://developer.android.com/develop/ui/compose

	Introduction
	Scene
	Motivation
	Aim
	Objectives

	Background
	Hypothesis
	Safety in Aviation
	History
	Checklists

	Formal Methods
	History
	Application

	Solution Stack
	Formal Model
	Checklist Tester
	Flight Simulator Plugin

	Design/Implementation
	Components
	Formal Method
	Checklist Tester
	Designing
	Compose Multiplatform
	Storing Data
	VDMJ Wrapper
	Connecting to the Flight Simulator
	Testing

	Simulator Connector Plugin
	Creating Maven Package
	Submitting a Pull Request

	Scenarios
	Decisions

	Results
	Problems Found
	LOC?
	Reflection
	Time Spent

	Conclusion
	Changes
	Objectives
	What Next

	Formal Model
	References

