
Testing Quick Reference Handbooks in Flight Simulators

Anthony Berg (200871682)
Supervisor: Leo Freitas

Word Count: 6430

22nd May 2024

Preface

Abstract
This is an abstract.

Declaration
I declare that this dissertation represents my own work except where otherwise stated.

Acknowledgements
I would like to thank my supervisor Leo Freitas for supporting, guiding, and providing with areas
of improvement for me throughout the project.

i

Contents

1 Introduction 1
1.1 Scene . 1
1.2 Motivation . 1
1.3 Aim . 1
1.4 Objectives . 1

2 Background 3
2.1 Hypothesis . 3
2.2 Safety in Aviation . 3

2.2.1 History . 3
2.2.2 Checklists . 3

2.3 Formal Methods . 4
2.4 Solution Stack . 4

2.4.1 Formal Model . 5
2.4.2 Checklist Tester . 5
2.4.3 Flight Simulator Plugin . 5

3 Design/Implementation 6
3.1 Components . 6
3.2 Formal Method . 6
3.3 Checklist Tester . 7

3.3.1 Designing . 7
3.3.2 Compose Multiplatform . 7
3.3.3 Storing Data . 9
3.3.4 VDMJ Wrapper . 12
3.3.5 Connecting to the Flight Simulator . 13
3.3.6 Testing . 13
3.3.7 Creating Maven Package . 14
3.3.8 Submitting a Pull Request . 14

3.4 Scenarios . 15
3.5 Decisions . 15

4 Results 16
4.1 Final Prototype . 16

4.1.1 Formal Model . 16
4.1.2 Checklist Tester . 16
4.1.3 Setting up Tests . 16

4.2 Problems Found . 17
4.3 LOC? . 17
4.4 Reflection . 17

4.4.1 Planning . 17
4.4.2 Implementation . 18

4.5 Time Spent . 18

5 Conclusion 20
5.1 Changes . 20

ii

CONTENTS CONTENTS

5.2 Objectives . 20
5.3 What Next . 21

A Formal Model 22

B Database 30
B.1 SQL Schemas . 30

References 33

iii

Chapter 1

Introduction

1.1 Scene
Designing aviation checklists is difficult and requires time to test them in simulators and the real
world. [1] The simulators require trained pilots to test the checklist and make sure that they
work consistently [2]; testing that the steps in the checklist are concise, achieves the goal of the
checklist, and will not take too long to complete to the point it could compromise the safety of the
aircraft. These checklists are also carried out by the crew in high workload environments, where
this workload would be elevated if an emergency were to occur. [3]

1.2 Motivation
Testing procedures in checklists is often neglected by designers. [1] This is shown in historic in-
cidents, where the checklists to aid resolve the problem at the time was not fit for the specific
scenario that crew was in.

An example of this is the checklist used on US Airways Flight 1549. This flight suffered a dual
engine failure due to a bird strike at an altitude of 2818 ft (859m). The first action by the pilot was
to turn on the Auxiliary Power Unit (APU), allowing critical systems, such as the flight controls
and navigational aids, to be powered as the engines were no longer able to power those systems.
However, if the first call was to run through the dual engine failure checklist (the one used on the
flight), it would have been the 11th item on the checklist. Using the checklist from the beginning
could have resulted in a worse outcome of the incident, but due to the crew’s experience, they
managed to execute the most successful ditching (water landing) in history. [4]

Therefore, this calls for a way to implement a way to test checklists for aspects that may have
been overlooked during the development of the checklist.

1.3 Aim
The goal of this project is to test checklists in Quick Reference Handbooks (QRH) for flaws that
could compromise the aircraft and making sure that the tests can be completed in a reasonable
amount of time by pilots. It is also crucial to make sure that the tests are reproducible in the same
flight conditions and a variety of flight conditions.

1.4 Objectives
1. Research current checklists that may be problematic and are testable in the QRH tester being

made

2. Implement a formal model that runs through checklists, with the research gathered, to pro-
duce an accurate test

1

1.4. OBJECTIVES CHAPTER 1. INTRODUCTION

(a) Understand the relative states of the aircraft that need to be captured

(b) Ensure that the results of the checklist procedures are consistent

3. Implement a QRH tester manager that

(a) Runs the formal model and reacts to the output of the formal model

(b) Connect to a flight simulator to run actions from the formal model

(c) Implement checklist procedures to be tested, run them, and get feedback on how well
the procedure ran

2

Chapter 2

Background

2.1 Hypothesis
• Checklists can be tested in a simulated environment to find flaws in checklist for things like

– Can be done in an amount of time that will not endanger aircraft

– Provides reproducible results

– Procedures will not endanger aircraft or crew further (Crew referring to Checklist Man-
ifesto with the cargo door blowout)

• Results in being able to see where to improve checklists

2.2 Safety in Aviation

2.2.1 History
• 70-80% of aviation accidents are attributed to human factors [5]

• The first use of a checklist was in 1935 after the crash of a prototype plane known back then
as the Model 299 (known as the Boeing B-17 today), due to the complex procedures required
to operate the aircraft normally and forgetting a step resulting in lack of controls during
takeoff [2]

• It was found that because of the complicated procedure to operate the aircraft that the pilots
would forget steps, and hence the concept of checklists was tested, and found to minimize
human errors [2]

2.2.2 Checklists
Checklists are defined by the Civil Aviation Authority (CAA), the UK’s aviation regulator, as: ‘A
set of written procedures/drills covering the operation of the aircraft by the flight crew in both
normal and abnormal conditions. … The Checklist is carried on the flight deck.’ [6] These checklists
as a result has shown to be a crucial tool in aviation to minimize human errors. [2]

There are multiple checklists that are designed for aircraft for the use of normal operation and
potential problems that could arise during the flight. These checklists are stored in a Quick
Reference Handbook (QRH) which is kept in the cockpit of each aircraft for use when needed. The
definition of a QRH by CAA is:

A handbook containing procedures which may need to be referred to quickly and/or
frequently, including Emergency and Abnormal procedures. The procedures may be
abbreviated for ease of reference (although they must reflect the procedures contained

3

2.3. FORMAL METHODS CHAPTER 2. BACKGROUND

in the AFM1). The QRH is often used as an alternative name for the Emergency and
Abnormal Checklist. [6]

However, checklists themselves can have design flaws as noted by researchers at the National Aero-
nautics and Space Administration (NASA) where checklists can be misleading, too confusing, or
too long to complete, as a result having the potential of compromising the safety of the aircraft. [1]
An example of this is what happened on Swiss Air Flight 111, where an electrical fault was made
worse by following the checklist, resulting in the aircraft crashing in the ocean. This was as the
flight crew was unaware of the severity of the fire caused by the electrical fault. Following the steps
in the checklist, one of the steps was to cut out power to ‘non-essential’ systems, which increased
the amount of smoke in the cockpit. Simultaneously, the checklist itself was a distraction as it was
found to take around 30 minutes to complete in testing during the investigation. [7] This incident
shows that checklists need to be tested for these flaws, and considering the original checklist for
Swiss Air Flight 111 would have taken 30 minutes to theoretically complete, this could be time-
consuming for checklist designers, and this would be something to note whilst working on this
project.

There are other potential problems with checklists, noted by the CAA, where the person running
through the checklist could skip a step either unintentionally, by interruption, or just outright
failing to complete the checklist. Or the crew may also not be alerted to performance issues within
the aircraft, which would be a result of running the checklist. [6] Therefore, this would be useful
to add for features when testing checklists, such as adding the ability to intentionally skip a step
of a checklist or gathering statistics on how the performance of the aircraft has been affected as a
result of using the checklist.

Another problem to note about checklists is the human factor where the crew may fail to use the
checklist, like in the case of Northwest Airlines Flight 255, where the National Transportation Safety
Board (NTSB), an investigatory board for aviation accidents in the United States, determined that
‘the probable cause of the accident was the flight crew’s failure to use the taxi checklist to ensure
that the flaps and slats were extended for takeoff.’ [8] This shows that even though checklists have
shown to improve safety of the aircraft, there are other measures that aviation regulatory bodies are
required implement, to avoid situations where the crew may completely ignore safety procedures
and systems.

2.3 Formal Methods
Formal methods is a mathematical technique that can be used towards the verification of a system,
that could either be a piece of software or hardware. Therefore, this can be used to verify correctness
of all the inputs in a system. [9] Hence, as this project is dealing with safety, it would be beneficial
to use formal methods for testing and verification.

An example of where formal methods is used within aviation is by Airbus, where it was used
during the development of the Airbus A380. Formal methods was used to test the A380 for proof
of absence of stack overflows and analysis of the numerical precision and stability of floating-point
operators to name a few. [10]

2.4 Solution Stack
• There would be around 3 main components to this tester

– Formal Model

– Flight Simulator plugin

– Checklist Tester (to connect the formal model and flight simulator)

• As VDM-SL is being used, it uses VDMJ to parse the model [11]. This was a starting point
for the tech stack, as VDMJ is also open source.

1Aircraft Flight Manual - ‘The Aircraft Flight Manual produced by the manufacturer and approved by the CAA.
This forms the basis for parts of the Operations Manual and checklists. The checklist procedures must reflect those
detailed in the AFM.’ [6]

4

CHAPTER 2. BACKGROUND 2.4. SOLUTION STACK

• VDMJ is written in Java [11], therefore to simplify implementing VDMJ into the Checklist
Tester, it would be logical to use a Java virtual machine (JVM) language.

2.4.1 Formal Model
• There were a few ways of implementing the formal model into another application

• Some of these methods were provided by Overture [12]

– RemoteControl interface

– VDMTools API [13]

• However, both of these methods did not suit what was required as most of the documentation
for RemoteControl was designed for the Overture Tool IDE. VDMTools may have handled
the formal model differently

• The choice was to create a VDMJ wrapper, as the modules are available on Maven

2.4.2 Checklist Tester
JVM Language

• There are multiple languages that are made for or support JVMs [14]

• Requirements for language

– Be able to interact with Java code because of VDMJ

– Have Graphical User Interface (GUI) libraries

– Have good support (the more popular, the more resources available)

• The main contenders were Java and Kotlin [15]

• Kotlin [15] was the choice in the end as Google has been putting Kotlin first instead of Java.
Kotlin also requires less boilerplate code (e.g. getters and setters) [16]

Graphical User Interface

• As the tester is going to include a UI, the language choice was still important

• There are a variety of GUI libraries to consider using

– JavaFX [17]

– Swing [18]

– Compose Multiplatform [19]

• The decision was to use Compose Multiplatform in the end, due to time limitations and
having prior experience in using Flutter [20]

• Compose Multiplatform has the ability to create a desktop application and a server, which
would allow for leeway if a server would be needed

2.4.3 Flight Simulator Plugin
• There are two main choices for flight simulators that can be used for professional simulation

– X-Plane [21]

– Prepar3D [22]

• X-Plane was the choice due to having better documentation for the SDK, and a variety of
development libraries for the simulator itself

• For the plugin itself, there was already a solution developed by NASA, X-Plane Connect [23]
that is more appropriate due to the time limitations and would be more likely to be reliable
as it has been developed since 2015

5

Chapter 3

Design/Implementation

3.1 Components
The best way to view the design and implementation of this project is by splitting up the project
into multiple components. This has been useful for aiding in planning the implementation, as a
result making being efficient with time and requiring less refactoring. The planning allows for
delegating specific work tasks, and making the project modular. A benefit of making this project
modular is improving the maintainability of the codebase, and allowing for future upgrades or
changes, for example, using a different flight simulator for testing.

Checklist Tester
Simulator Con-
nector PluginFormal Method

Flight Simulator

Figure 3.1: Abstract layout of components

Each of the components in Figure 3.1 will be covered in detail in this chapter.

3.2 Formal Method
Formal modelling is the heart of the logic for testing checklists in this project and is created using
VDM-SL. The formal model is the logic behind the actions of running through a checklist and
checking if the checklist has been completed in the correct manner.

To be able to check that the checklist has been properly completed, the formal model keeps track
of aircraft states, such as what state each switch in the aircraft is in; and the state of the checklist,
such as what steps in the checklist has been completed.

As there are invariants, pre-, and post-conditions, which are used for setting well-formedness
conditions for types or functions, provide type and input safety, which will result in an error when
broken. This is useful to make sure that the actions taken when completing the checklist is done
correctly, such as making sure that a switch that may have 3 possible states is moved in properly,
such as moving from off, middle, to on in order, rather than skipping from off to on. The cases
where errors would occur is when these well-formed conditions are broken, which can be a sign that
the checklist has been completed incorrectly, such as when the checklist is not completed in order,
could signify that a step in the checklist failed, which could mean that the step in the checklist is
problematic.

6

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

Testing

Making sure that the formal model does not have well-formed conditions that can be broken by the
formal model itself is important, as the goal of the formal model is to have a rigorous specification
that is verifiable.

Since VDMJ version 4.5.0, the VDM interpreter has included the QuickCheck tool, [24] which is
an automated testing tool to prove and find counter examples to specifications. [25]

There were multiple counter examples that was produced by QuickCheck that aided the develop-
ment of the formal model, as the qc1 command in VDMJ every time a new function was created to
find potential counter examples and fix them. Checking every time when creating a new function
was useful as it would avoid having to refactor more of the model.

3.3 Checklist Tester
The Checklist Tester is what provides a Graphical User Interface (GUI) for defining checklists to
be tested, and to run the tests on the checklist. It is also responsible for connecting the Formal
Method and the Simulator Connector Plugin together.

3.3.1 Designing
Creating an interface design before creating the GUI is useful as it is a form of requirements for
the code.

Figma was used to create the design for the GUI as there is support for plugins and having a
marketplace for components. This saved a lot of time in designing as Google provides components
for Material 32 and a plugin for creating a colour scheme for Material 3.

Having this design was useful as it aided in understanding what parts of the GUI could be modular
and reused, kept the feel of the design consistent, and helped memorize what parts of the GUI
needed to be implemented.

The final design for the interface can be seen in Figure 3.2, where the components at the top are
reusable modules, and the rest below are sections of the application that the user can navigate
through.

Limitations of Figma

There were some limitations when working with Figma, one of them being that the components cre-
ated for Material 3 did not include all the features that are available in the Compose Multiplatform
Framework.

This can be seen in the ‘Simulator Test’ screen at the bottom of Figure 3.2, where there is not
an option for leading icons [26] in each of the list items, and therefore had to be replaced with a
trailing checkbox instead. However, Figma allows for comments to be placed on the parts of the
design, which was used as a reminder to use leading icons in the implementation of the design.

Another limitation of Figma is that in Figure 3.2, the title of the screen in the top app bar [27] is
not centred, this is because the auto layout feature in Figma works by having equal spacing between
each object, rather than having each object in a set position. However, this is not detrimental to
the design, it is just obvious that the title is not centred in the window.

3.3.2 Compose Multiplatform
Setup

To set up Compose Multiplatform, the Kotlin Multiplatform Wizard was used to create the project
as it allows for the runtime environments to be specified (at the time of creation, Desktop and
Server), automatically generating the Gradle build configurations and modules for each runtime
environment, for the specific setup.

1The command to run QuickCheck on the formal model in VDMJ.
2Material 3 is a design system which is used in Compose Multiplatform UI Framework.

7

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

Simulator Status
737-800

Projects

Tester

Procedures

Simulator Test

Test Results

Application

Settings

About

Checklist Tester Simulator Status

Project Name

Ditching Checklist

Aircraft Type

A320

ICAO Code

Create

Create Project Simulator Status

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

List item

Boeing 737-800

New Project

Projects Simulator Status

Create Project

Welcome!

You currently have no projects...

Checklist Tester Simulator Status

Information

Procedure Name

Ditching at 1000ft

Type

Description

For loss of both engines

Actions

Type

Create

Create Procedure Simulator Status

Create Procedure

There are currently no procedures

Procedures Simulator Status

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

List item

Emergency

New Procedure

Procedures Simulator Status

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

List item

Tests Result

Simulator Test Simulator Status

Figure 3.2: Design for the Checklist Connector GUI in Figma

8

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

Implementation

Planning was important when implementing as Compose is designed to use modular components,
otherwise a nested mess would occur as Compose is designed to have Composable3 objects passed
into another Composable object. Therefore, due to how Kotlin is designed with functions, there
will be function nesting occurring naturally. To aid in readability of code due to the nesting
functions, the Composable objects are split into separate Composable functions. An example of
this is in Listing 3.1, where instead of 10 Composable functions being nested in the Content()
function, the items in the list (LazyColumn is used for creating lists) is split to a separate function,
ActionItem(), as a result making the maximum amount of nested functions to 5 for all functions.
Another benefit is that it allows for the ActionItem to be reused if desired, making the code
modular.

Voyager [28] was used to handle the navigation of the application as it handles replacing previous
navigation screens, and allows for inserting data into the navigation screens. This is as Voyager
has integration with Koin [29][30], which is a library that specifically handles dependency injection.
Using Koin allowed for data to be fetched from the database and to handle asynchronous functions,
such as running VDMJ and sending instructions to the flight simulator.

3.3.3 Storing Data
SQLDelight was used to handle the database as it creates typesafe Kotlin application programming
interfaces (APIs) to communicate to the database. It was specifically chosen as it provides support
for Compose Multiplatform [31], making implementing SQLDelight into the project easier.

A benefit of using SQLDelight is that it only allows for database queries to be written in SQL, al-
lowing for more complex, and more control of SQL queries. It also provides 100% test coverage [32]
which is necessary to ensure that the database will not cause artefacts to the results.

The choice of relational database management system (RDBMS) to complement SQLDelight was
SQLite as it allows for the database to run within the application, rather than running on a separate
server, either remotely or through a containerized instance using something like Docker [33]. As
a result, this avoided spending extra time implementing the server and adding extra complexity
due to requiring additional dependencies, which would also add extra maintenance overhead to the
project.

Designing the Database

The database could be looked at as having 2 sections, with relationships in mind between the two
sections, to fulfil of the objectives, as it will allow tracking of the checklist tests that will be run,
as a result being able to provide detailed statistics of the test. These relationships can be seen in
the entity relationship diagram in Figure 3.3.

One of the sections is for user inputs to control the tests. The Project table handles creating
separate aircraft, or it could be used for separate iterations of Quick Reference Handbooks (QRHs).
Then the Procedure and Action table handles defining steps/actions in a checklist/procedure.

The other section of the database would be providing test results for each of the checklists, which
are stored in the Test and ActionResult tables.

Expanding on the relationships between each table in Figure 3.3, the reasons for these relationships
is to allow for segregation of data and the ability to associate test data with what checklist was
tested.

Linking into Compose Multiplatform

Compose Multiplatform has support for different runtime environments which should be taken into
account when adding SQLDelight to Compose Multiplatform. However, as this project is only being
developed for Desktop, the JVM SQLite driver is the only one necessary to implement.

However, to improve maintainability of the code, the functions of the database was written in the
shared/commonMain module (a shared module that is accessible to multiple runtime environments).

3A Composable is a description of the UI that will be built by Compose Multiplatform

9

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

1 @Composable
2 override fun Content() {
3 // Content variables...
4

5 Scaffold(
6 topBar = {/* Composable content... */},
7) {
8 Column(/* Column option parameters... */) {
9 Box(/* Box option parameters... */) {

10 LazyColumn(/* LazyColumn option parameters... */) {
11

12 item {
13 Header()
14 }
15

16 items(
17 items = inputs,
18 key = { input -> input.id }
19) { item ->
20 ActionItem(item)
21 }
22 }
23 }
24 }
25 }
26 }
27

28 @Composable
29 private fun Header() {
30 Text(text = "Edit Actions")
31 }
32

33 @Composable
34 private fun ActionItem(item: Action) {
35 Column (/* Column option parameters... */) {
36 Row(/* Row option parameters... */) {
37 Text(text = "Action ${item.step + 1}")
38

39 IconButton(/* IconButton definition parameters... */) {
40 Icon(
41 Icons.Outlined.Delete,
42 // Rest of Icon options...
43)
44 }
45 }
46

47 Row(/* Row option parameters... */) {
48 OutlinedTextField(/* TextField definition parameters... */)
49

50 OutlinedTextField(/* TextField definition parameters... */)
51 }
52

53 HorizontalDivider()
54 }
55 }

Listing 3.1: Example of modular code in Compose

10

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

Procedure

id

nametypedescription

createdUTCmodifiedUTC

Contains Project

nameidaircraftType

createdUTC

modifiedUTC

Contains

Action

step

id

type

goal Contains

ActionResult

id

startUTC endUTC

initState endState

Contains

Contains

Testid

startUTC

endUTC

N

1

1

N

1

N

1

N

1

N

Figure 3.3: Entity Relationship Diagram for the database in Checklist Connector

11

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

This would be useful if there was a need for adding Android and/or iOS support for this project
as some designers may want to run the tests on a tablet.

Handling the database was done by implementing two modules. One module is the io.anthonyberg→
.connector.shared.database module, used to handle SQLDelight API calls only; meaning no
conversion of types, functions are only accessible internally within the io.anthonyberg.connector→
.shared module.

The other module is the Software Development Kit (SDK) that handle type conversions, such as
Int to Long, and can handle multiple tables, such as TestTransaction SDK that handles calls to
multiple tables when a test is run in the flight simulator.

The separation of these modules was also done to have unit testing in mind because it will make
it easier to debug if a problem is due to how SQLDelight transactions are handled, or if there are
type conversions errors occuring.

3.3.4 VDMJ Wrapper
• VDMJ is written in Java and it is free open source software that is accessible on GitHub

• This allows for VDMJ to be used as per the licence, GNU General Public License v3
(GPLv3) [34] [35]. This means that as VDMJ is being used as a library, the code for this
project has to be licensed with GPLv3 or any GPLv3 compatible licence [36]

Implementing VDMJ

• VDMJ has packages available on Maven Central making adding it as a dependency simple

• The package used was dk.au.ece.vdmj:vdmj with version 4.5.0

• However, initially when implementing VDMJ, 4.5.0-P was used accidentally, and it led to
debugging why imports were not working; and therefore the -P versions are not suitable

• The initial method of implementation was using a Ktor server that would have run along-
side the desktop application, where the server would handle Representational State Transfer
(REST) API calls

• This was unnecessary as the interactive mode of VDMJ was able to run on the desktop
application itself. However, the Ktor was useful for debugging and testing as an API route
was created to allow VDMJ commands to be executed through a URL

• To be able to get the outputs from VDMJ, a ConsolePrintWriter new had to be created
from the com.fujitsu.vdmj.messages package; which handles writing to the console stdout.
This then gets used to replace the Console.out and Console.err in the com.fujitsu.vdmj→
.messages package

• Parsing commands into VDMJ interface - was more difficult 4

– Created a PipedInputStream object, that gets connected to a PipedOutputStream→
object by passing the latter object in as a parameter. The PipedOutputStream is then

used to pass inputs into PipedInputStream

– To be able to write to this stream, a BufferedWriter is created by passing the PipedOutputStream→
with a bridge OutputStreamWriter that encodes characters into bytes

– For VDMJ to be able to read the input stream, a separate object had to be cre-
ated, BufferedReader, where the PipedInputStream gets parsed through a bridge,
InputStreamReader that converts bytes to characters

Handling VDMJ Outputs

• VDMJ outputs are handled using string manipulation

• Created into objects that are replicas of types in VDM-SL
4The objects created here are provided by the java.io package.

12

CHAPTER 3. DESIGN/IMPLEMENTATION 3.3. CHECKLIST TESTER

Run VDM
command

BufferedWriter

Encode to byte

PipedOut-
putStream PipedInputStream

Decode to charset

BufferedReader

Read by VDMJ

Figure 3.4: Flowchart of VDMJ Input/Output Stream handling

• The string manipulation allows specifying where the outputs of the object go

3.3.5 Connecting to the Flight Simulator
• Implemented XPC into the flight simulator

• Allowed being able to

– Read data from the simulator

– Override dataref variables in the simulator

– Execute other commands that can manipulate certain switches where otherwise unable
to by changing the value of the dataref

• Made sure to check that the simulator is connected before running the test to avoid exceptions
being thrown

• Logic behind doing an action is to fetch the action’s initial state from the dataref variable
name, run the action, then get the final state of the dataref

• There is an artificial delay added before running the action to try and simulate a delay of
the crew’s lag between reading the step of the checklist and doing the action

• Because of this, XPC had to be run asynchronously to prevent the GUI from hanging as a
function is waiting to complete - prevents misleading user that the application has crashed,
and it looks better

3.3.6 Testing
• Testing can be run with Gradle when it comes to running unit tests

• Decided to use JUnit 5 as it provides additional tools such as statistics, integration with
IntelliJ to view code coverage, or being run in continuous integration tests

• The testable components in this project is mostly backend modules as the GUI made in
Compose is not the focus of the project, and it would require a lot of extra time

• Unit tests have been made for the database and Koin

• Koin comes with tests that can be automatically be generated

• Ethos when testing was to try and find exploits, act as a user who may mishandle inputs,
and stress testing functions by passing parameter with hundreds of objects

13

3.3. CHECKLIST TESTER CHAPTER 3. DESIGN/IMPLEMENTATION

Testing for Resource Usage

• The application was tested using the Profiler tool on IntelliJ IDEA 2024 (Ultimate Edition)
to find potential memory leaks

• One problem found was the initial VDMJ wrapper which would use the execute command
instead of the interpreter, which would require reinitializing the entirety of VDMJ, which
resulted in a slight memory leak and a massive write usage

3.3.7 Creating Maven Package
• XPC package is not published on a public Maven repository

• There has been a pull request that was merged to the develop branch that provides Maven
POMs [37]. However, the maintainer for the project, at the time, did not have enough time
to figure out the process of publishing the package to a Maven repository [38]

• Therefore, had to find an alternative way to implement

• Jitpack [39]

– In theory, simple to publish a repository, all that is required is a GitHub repository
and searching if one has already been created on JitPack or build and publish a specific
version

– However, due to the structure of the XPC repository, JitPack could not locate the build
tools (Apache Maven in this case) as JitPack only searches on the root directory for the
compatible build tools

• Gradle gitRepository [40]

– There was not a lot of documentation

– Ambiguous on how to define directory for where the Java library is located in the Git
repository

– However, as XPC was only built with Maven, Gradle was not able to add the dependency
as gitRepository() only works with Gradle builds [41]

• Resorted to using a compiled Jar file and adding the dependency to Gradle

• Not happy about that because it means maintaining it will be more difficult as it is not as
simple as just changing the version number

• Later, resorted to adding Gradle build files to XPC

• Used automatic conversion from Maven to Gradle using gradle init command [42]

• Had to add local dependencies due to how Gradle works differently

• Had to fix previous structure of Maven POM as the grouping as not good

Continuous Deployment of the Maven Package

• Used GitHub’s template for Gradle package publishing

• Required some setup in Gradle build files

3.3.8 Submitting a Pull Request
• Adding the Gradle build tools can be seen as being helpful for others, as it would allow for

the XPC library to be added as a dependency, especially if the NASA Ames Research Center
Diagnostics and Prognostics Group were to add it to the GitHub repository, it would mean
that it would be easier for people to access Maven Packages for XPC

• Therefore, to help improve the experience for other people who would want to develop with
the XPC Java library, it would be logical to submit a pull request

• But it did mean making sure that the contribution would be perfect and not contain problems

14

CHAPTER 3. DESIGN/IMPLEMENTATION 3.4. SCENARIOS

Testing

• The XPC Java library includes a JUnit 4 test, however, implementing this with Gradle proved
useless, as it was not able to get the results from the tests, which would be bad for not being
able to catch problems with new builds

• Therefore, the tests were updated to JUnit 5, where most of the changes were adding asserts
for throws [43] 5

GitHub

• Made sure to add generated build files to .gitignore

• Changed the URL of the repository in Gradle to NASA’s repository so that the Maven
package can be published correctly on the GitHub repository

• From the beginning anyways, made sure to have insightful commit messages

• Submitted the pull request stating the changes made6

3.4 Scenarios
• Use a Quick Reference Handbook (QRH) to find potential list of checklists to test

• Look at previous accident reports that had an incident related to checklists and test it with
my tool to see if it will pick it up

• These previous accident reports can be good metrics to know what statistics to look out for

3.5 Decisions

5The commit including the changes to the tests can be viewed here: https://github.com/smyalygames/
XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148

6https://github.com/nasa/XPlaneConnect/pull/313

15

https://github.com/smyalygames/XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148
https://github.com/smyalygames/XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148
https://github.com/nasa/XPlaneConnect/pull/313

Chapter 4

Results

4.1 Final Prototype
4.1.1 Formal Model

• The model is mostly designed to imitate a Boeing 737-800, as the types modelled, have user
inputs which are different from other aircraft types

– For example, the Airbus A320 has push buttons whereas they are not there on the
737-800

– However, further user input types could be added to the model and as a result, further
aircraft types could have their procedures run through the formal model

• The Procedure type makes sure that the items on the procedure is completed in order, and
if a step is missed, that would result in an invariant failure, resulting in the checklist test
failing

4.1.2 Checklist Tester
• The main features of GUI have been completed, it has all the sections desired

– Projects can be created to split up different aircraft or revisions of checklists

– Procedures can be created and tested

– These procedures get tested in the flight simulator automatically and gives the results
of how the procedure has been doing in real time

4.1.3 Setting up Tests
• Each test is set up by defining each action in the procedure, on the Procedure screen

• To be able to define each action is supposed to do, it uses the Dataref variables in X-Plane,
which is what stores the state of the aircraft. Each switch has their own unique Dataref

• In the checklist tester then, each action asks for a Dataref and a desired goal value

• Some Datarefs are read only, but there are other Datarefs for the item desired, but are only
‘command’s, which can only be called and not have its value changed; this can be run by
setting the desired goal value to be -988 (because XPC uses that value)

Running Tests

• Tests are run by connecting to the flight simulator, X-Plane

• The tester goes through each action in the procedure one by one and waits for the current
action to complete before proceeding on to the next one

16

CHAPTER 4. RESULTS 4.2. PROBLEMS FOUND

• The checklist tester is not advanced enough to be able to control fly the aircraft; hence the
tester would be able to engage autopilot first, or control the aircraft themselves, where the
checklist tester would be acting like a first officer

Storing Test Results

• There is a database storing the results of each of the tests

• Each tests store

Time taken for each of the actions in the procedure to complete

Start state for the state that the action in the procedure was at

End state for the state that the action in the procedure finished the item at

Overall test time Stores the time taken from when the test started to when the test ended

• This gives feedback/statistics for the checklist designers to find areas of improvement on the
procedure, such as one action in the procedure taking too long, may point out a potential
flaw to the designer and as a result aid finding potential alternative options for that step in
the procedure

4.2 Problems Found

4.3 LOC?

4.4 Reflection
4.4.1 Planning
Gantt Chart

Used Gantt chart to create a plan for what would be needed from this project

Pros:

• Was useful for the first part because it set expectations of what was needed and how much
time there was to complete them

• Helped visualize the different components of the project

• Helped in the beginning being accompanied by a Kanban in Leantime1

Cons:

• Was not detailed enough, and a design document would have been useful to accompany the
Gantt chart for each section

• The lack of detail was not helpful when falling behind as having attention deficit hyperactivity
disorder (ADHD) added to the burden of feeling like each section was a massive project

• Leantime’s claim for being ‘built with ADHD […] in mind’ felt misleading as navigating
through it felt worse than using the front page of Stack Overflow2

• Todoist3 was a good alternative though

GUI Design

Figma was very useful in implementations as

Pros:

• It helped with timing and knowing what to do
1https://leantime.io/
2https://stackoverflow.com/
3https://todoist.com/

17

https://leantime.io/
https://stackoverflow.com/
https://todoist.com/

4.5. TIME SPENT CHAPTER 4. RESULTS

• Made things feel manageable as it was split up to different sections

• Meant features will not be forgotten

Cons:

• Certain features being too simple and annoying to use

• A bit of a learning curve for using other components, compared to using plugins

4.4.2 Implementation
Checklist Tester

• Implementing the GUI was useful to split up the sections required for the project and having
a goal for what to be done

• However, a bit too much time was spent on creating a GUI when it could have been used for
development

• It was useful for motivational reasons to feel like something materialistic has been produced
rather than something theoretical

• Was originally intended to be used to interact with custom plugin for X-Plane as it would
have been difficult otherwise

Connecting to the Flight Simulator

• Would have been more useful to search a bit further if there was another plugin available,
as found Dataref Editor on the X-Plane docs, so could have looked for a similar plugin for
connecting to X-Plane

• At first spent about a week developing a C++ X-Plane plugin from scratch, requiring to
figure out sockets

• At the same time finding out XPC exists and having wasted that time

• However, it did teach me more about understanding how sockets work and more about C++
and setting up a project with CMake and adding packages with vcpkg

4.5 Time Spent
• Time spent was recorded using Wakatime, other than time spent researching, which had to

be recorded manually, using Leantime

• The time spent on GUI is also time spent on connecting other tools such as the VDMJ
wrapper, XPC, and the database

18

CHAPTER 4. RESULTS 4.5. TIME SPENT

40
11.5

2

14.5

15.5

13
6

32

GUI
Database
Unit Tests
Configuring Connector
Formal Modelling
VDMJ Wrapper
Packaging XPC
Research

2

40
11.5

Figure 4.1: Time spent on sections of project (in hours)

19

Chapter 5

Conclusion

5.1 Changes
• Added the checklist manager which was not a part of the original objectives

– Helped more to visualize the project

– Aided in gathering statistics for how well the checklist performed

– Using Kotlin helped speed up development, it simplifies parts of Java and omitted a lot
of boilerplate code that is required in Java, such as setters and getters

• How the Formal Model would interact was modified

– Initially was designed so that the formal model would complete the entirety of the
checklist, however, it was not useful for interacting with the flight simulator

– Modified the model to provide it would be similar to actions pilots can do in the cockpit

– Therefore acts like Read Checklist → Pilot Logic (VDM) → Do Action (XPC)

• Originally was supposed to write an original plugin to connect to the flight simulator

– Whilst creating the plugin, sockets were confusing and accidentally stumbled on the
X-Plane Connect GitHub repository

– This could have been prevented if a design document was created and time was spent
researching for tools in obscure places

5.2 Objectives
• Most of the objectives were met

• One of the original objectives was to research pilot reaction times and how long it takes pilots
to complete an action

– However, not able to do that as there are too many factors that can affect a pilot’s
reaction time, such as age, experience on an aircraft, total experience, how far a button
is from the pilot, etc.

• Objective 2.a. was met to an extent

– Currently, the states of the aircraft monitored are only the actions specified in the test,
in the checklist tester

– There could be more variables that could be monitored. Such as engine fire, could
monitor the engine temperature or thrust produced by engine

– This would have required a substantial amount of planning as checklists do have condi-
tional statements, for example ‘If APU is available, then do Step 3 else do Step 4’

20

CHAPTER 5. CONCLUSION 5.3. WHAT NEXT

• Objective 2.b. was also met to an extent

– Currently, this can be met by re-running the test multiple times manually

– However, it is manual at this stage due to limitations of XPC and setting up the aircraft

– The test data is stored on the database, hence test results can be analysed to see the
consistency between each test

• The Checklist Tester does not currently run actions from the Formal Model due to imple-
menting the functions from VDMJ being laborious

• Hence focus was put on XPC first, as it would produce direct results

5.3 What Next
The most important next steps to implement would be linking the formal mode, adding options of
what parts of the aircraft to monitor

• Formal Model

– Implemented either by creating an automatic wrapper. Done by either potentially
linking the VDMJ LSP, or creating a plugin for VDMJ

– Or doing string manipulation on the VDM results for each of the functions as a lot of
it is copy and paste - can be bad practice as it requires a lot of hard-coded code

• Monitoring more of the aircraft

– Done by adding options in the Checklist Tester for extra Datarefs to monitor

– Modifying the Aircraft record type to include a states type that checks multiple times
throughout the procedure if this state has violated a constraint or if the goal of the state
has been achieved (e.g. Engine is no longer on fire)

• Expanding out of the scope of the objectives, conditional logic, such as if statements, to the
checklist would be the next logical step

– VDM-SL would be really helpful for this, as can be used to design logic to be used
outside of Kotlin

– This would allow for further automation of checklists, rather than only testing linearly,
which at this current state would require writing the test multiple times

• Adding more detailed test results

– Use analysis of previous test results to gain an understanding of the reproducibility of
the procedure

– Keep track of aircraft state, such as speed or altitude aiding in understanding if the
procedure may impose a safety risk

21

Appendix A

Formal Model

1 module Checklist
2 exports all
3 definitions
4
5 values
6 -- Before Start Checklist
7 -- Items in Aircraft
8 -- Flight Deck... (can't check)
9 fuel: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, false)→

);
10 pax_sign: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, →

true));
11 windows: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<ON>, →

false));
12 -- Preflight steps
13 acol: ItemObject = mk_ItemObject(<SWITCH>, mk_Switch(<OFF>, false)→

);
14
15 aircraft_panels: Items = {"Fuel Pump" |-> fuel, "Passenger Signs" →

|-> pax_sign , "Windows" |-> windows, "Anti Collision Lights" →
|-> acol};

16
17 -- Checklist
18 -- Flight Deck... (can't check)
19 fuel_chkl: ChecklistItem = mk_ChecklistItem("Fuel Pump", <SWITCH>,→

<ON>, false);
20 pax_sign_chkl: ChecklistItem = mk_ChecklistItem("Passenger Signs",→

<SWITCH>, <ON>, false);
21 windows_chkl: ChecklistItem = mk_ChecklistItem("Windows", <SWITCH→

>, <ON>, false);
22 -- Preflight steps
23 acol_chkl: ChecklistItem = mk_ChecklistItem("Anti Collision Lights→

", <SWITCH>, <ON>, false);
24
25 before_start_procedure: Procedure = [fuel_chkl , pax_sign_chkl , →

windows_chkl , acol_chkl];
26
27 aircraft = mk_Aircraft(aircraft_panels , before_start_procedure);
28 types
29 --@doc The dataref name in X-Plane
30 Dataref = seq1 of char;
31

22

APPENDIX A. FORMAL MODEL

32 -- Aircraft
33
34 -- Switches
35 --@doc The state a switch can be in
36 SwitchState = <OFF> | <MIDDLE> | <ON>;
37
38 --@LF why have a type kist as a rename?
39 ItemState = SwitchState; --@TODO | Button | ...
40
41 --@doc A switch, with the possible states it can be in, and the →

state that it is in
42 Switch ::
43 position : SwitchState
44 middlePosition : bool
45 inv s ==
46 (s.position = <MIDDLE> => s.middlePosition);
47
48 -- Knob
49 Knob ::
50 position : nat
51 --@LF how can a state be an int? perhaps a proper type (i..e. →

subset of int range or a union?)
52 states : set1 of nat
53 inv k ==
54 k.position in set k.states;
55
56 Lever = nat
57 inv t == t <= 100;
58
59 Throttle ::
60 thrust: Lever
61 reverser: Lever
62 inv t ==
63 (t.reverser > 0 <=> t.thrust = 0);
64
65 --@doc The type that the action of the button is
66 ItemType = <SWITCH> | <KNOB> | <BUTTON> | <THROTTLE >;
67
68 --@doc The unique switch/knob/etc of that aircraft
69 ObjectType = Switch | Knob | Throttle;
70 ItemObject ::
71 type : ItemType
72 object : ObjectType
73 inv mk_ItemObject(type, object) ==
74 cases type:
75 <SWITCH> -> is_Switch(object),
76 <KNOB> -> is_Knob(object),
77 <THROTTLE>-> is_Throttle(object),
78 --<BUTTON> -> true
79 others -> true
80 end;
81
82 --@doc Contains each ItemObject in the Aircraft , e.g. Fuel Pump →

switch
83 Items = map Dataref to ItemObject;
84
85 --@doc Contains the panels (all the items in the aircraft) and the→

procedure

23

APPENDIX A. FORMAL MODEL

86 Aircraft ::
87 items : Items
88 procedure : Procedure
89 inv mk_Aircraft(i, p) ==
90 ({ x.procedure | x in seq p } subset dom i);
91
92 -- Checklist
93
94 --@doc Item of a checklist , e.g. Landing gear down
95 ChecklistItem ::
96 --@LF again, empty string here doesn't make sense.
97 procedure : Dataref
98 type : ItemType
99 --TODO Check is not only SwitchState

100 check : SwitchState
101 checked : bool;
102
103 --@doc This is an item in the aircraft that complements the item →

in the procedure
104 ItemAndChecklistItem ::
105 item : ItemObject
106 checklistItem: ChecklistItem
107 inv i == i.item.type = i.checklistItem.type;
108
109 --@doc A section of a checklist , e.g. Landing Checklist
110 --@LF shouldn't this be non-empty? What's the point to map a →

checklist name to an empty procedure? Yes.
111 Procedure = seq1 of ChecklistItem
112 inv p ==
113 --@LF the "trick" for "false not in set S" is neat. It →

forces a full evaluation , rather than short circuited →
(i.e. stops at first false).

114 -- I presume this was intended.
115 false not in set {
116 let first = p(x-1).checked, second = p(x).checked in
117 --@LF boolean values don't need equality check
118 second => first--((first = true) and (second = →

false))
119 | x in set {2,...,len p}};
120
121 functions
122 -- PROCEDURES
123 --@doc Finds the index of the next item in the procedure that →

needs to be completed
124 procedure_next_item_index: Procedure -> nat1
125 procedure_next_item_index(p) ==
126 hd [x | x in set {1,...,len p} & not p(x).checked]--p(x).→

checked = false]
127 pre
128 -- Checks procedure has not already been completed
129 not procedure_completed(p)--procedure_completed(p) = false
130 post
131 -- Checks that the index of the item is the next one to be →

completed
132 --@LF your def is quite confusing (to me)
133 --@LF how do you know that RESULT in inds p? Well, the →

definition above okay.

24

APPENDIX A. FORMAL MODEL

134 -- but you can't know whether p(RESULT -1) will! What if →
RESULT=1? p(RESULT -1)=p(0) which is invalid!

135 (not p(RESULT).checked)
136 and
137 (RESULT > 1 => p(RESULT -1).checked)
138 --p(RESULT).checked = false
139 --and if RESULT > 1 then
140 -- p(RESULT -1).checked = true
141 --else
142 -- true
143 ;
144
145 -- --@doc Checks if all the procedures have been completed
146 -- check_all_proc_completed: Checklist -> bool
147 -- check_all_proc_completed(c) ==
148 -- false not in set { procedure_completed(c(x)) | x in set →

{1,...,len c} };
149
150 -- --@doc Gives the index for the next procedure to complete
151 -- next_procedure: Checklist -> nat1
152 -- next_procedure(c) ==
153 -- hd [x | x in set {1,...,len c} & not procedure_completed(c→

(x))]
154 -- post
155 -- RESULT <= len c;
156
157 --@doc Checks if the procedure has been completed
158 procedure_completed: Procedure -> bool
159 procedure_completed(p) ==
160 false not in set { p(x).checked | x in set {1,...,len p} };
161
162 --@doc Checks if the next item in the procedure has been completed
163 check_proc_item_complete: Procedure * Aircraft -> bool
164 check_proc_item_complete(p, a) ==
165 --@LF here you have a nice lemma to prove: →

procedure_next_item_index(p) in set inds p!
166 -- I think that's always true
167 let procItem = p(procedure_next_item_index(p)),
168 --@LF here you can't tell whether this will be true? i→

.e. procItem.procedure in set dom a.items?
169 item = a.items(procItem.procedure) in
170
171 --TODO need to be able to check for different types of →

Items
172 procItem.check = item.object.position
173 pre
174 procedure_completed(p) = false
175 --@LF perhaps add
176 --and
177 --p(procedure_next_item_index(p)).procedure in set dom a.items→

?
178 ;
179
180 --@doc Marks next item in procedure as complete
181 mark_proc_item_complete: Procedure -> Procedure
182 mark_proc_item_complete(p) ==
183 let i = procedure_next_item_index(p), item = p(i) in
184 p ++ {i |-> complete_item(item)}

25

APPENDIX A. FORMAL MODEL

185 pre
186 procedure_completed(p) = false;
187
188 --@doc Completes an item in the procedure
189 do_proc_item: ItemObject * ChecklistItem -> ItemAndChecklistItem
190 do_proc_item(i, p) ==
191 let objective = p.check,
192 checkckItem = complete_item(p) in
193 -- Checks if the item is in the objective desired by the →

checklist
194 if check_item_in_position(i, objective) then
195 mk_ItemAndChecklistItem(i, checkckItem)
196 else
197 mk_ItemAndChecklistItem(move_item(i, p.check), →

checkckItem)
198 pre
199 p.checked = false
200 post
201 -- Checks the item has been moved correctly
202 check_item_in_position(RESULT.item, p.check);
203
204 --@doc Completes a procedure step by step
205 -- a = Aircraft
206 complete_procedure: Aircraft -> Aircraft
207 complete_procedure(a) ==
208 let procedure = a.procedure in
209 mk_Aircraft(
210 a.items ++ { x.procedure |-> do_proc_item(a.items(x.→

procedure), x).item | x in seq procedure },
211 [complete_item(x) | x in seq procedure]
212)
213 pre
214 not procedure_completed(a.procedure)
215 post
216 procedure_completed(RESULT.procedure);
217
218 -- AIRCRAFT ITEMS
219 --@doc Marks ChecklistItem as complete
220 complete_item: ChecklistItem -> ChecklistItem
221 complete_item(i) ==
222 mk_ChecklistItem(i.procedure , i.type, i.check, true)
223 pre
224 i.checked = false;
225
226 --@doc Moves any type of Item
227 move_item: ItemObject * ItemState -> ItemObject
228 move_item(i, s) ==
229 -- if is_Switch(i) then (implement later)
230 let switch: Switch = i.object in
231 if check_switch_onoff(switch) and (s <> <MIDDLE >) and →

switch.middlePosition then
232 mk_ItemObject(i.type, move_switch(move_switch(→

switch, <MIDDLE >), s))
233 else
234 mk_ItemObject(i.type, move_switch(switch, s))
235 pre
236 wf_item_itemstate(i, s)
237 and not check_item_in_position(i, s);

26

APPENDIX A. FORMAL MODEL

238 -- and wf_switch_move(i.object, s);
239
240 --@doc Moves a specific switch in the aircraft
241 move_switch: Switch * SwitchState -> Switch
242 move_switch(i, s) ==
243 mk_Switch(s, i.middlePosition)
244 pre
245 wf_switch_move(i, s)
246 post
247 RESULT.position = s;
248
249 --@doc Checks if the switch is in the on or off position
250 check_switch_onoff: Switch -> bool
251 check_switch_onoff(s) ==
252 let position = s.position in
253 position = <OFF> or position = <ON>
254 post
255 -- Only one can be true at a time
256 -- If the switch is in the middle position , then RESULT cannot→

be true
257 -- If the switch is in the on/off position , then the RESULT →

will be true
258 (s.position = <MIDDLE >) <> RESULT;
259
260 --@doc Checks if the item is already in position for the desired →

state for that item
261 check_item_in_position: ItemObject * ItemState -> bool
262 check_item_in_position(i, s) ==
263 -- if is_Switch(i) then (implement later)
264 i.object.position = s
265 pre
266 wf_item_itemstate(i,s);
267
268 --@doc Checks if the Item.object is the same type for the →

ItemState
269 wf_item_itemstate: ItemObject * ItemState -> bool
270 wf_item_itemstate(i, s) ==
271 (is_Switch(i.object) and is_SwitchState(s) and i.type = <→

SWITCH >)
272 --TODO check that the item has not already been completed →

before moving item
273 --TODO add other types of Items
274 ;
275
276 --@doc Checks if the move of the Switch is a valid
277 wf_switch_move: Switch * SwitchState -> bool
278 wf_switch_move(i, s) ==
279 -- Checks that the switch not already in the desired state
280 i.position <> s and
281 -- The switch has to move one at a time
282 -- Reasoning for this is that some switches cannot be moved in→

one quick move
283 if i.middlePosition = true then
284 -- Checks moving the switch away from the middle position
285 (i.position = <MIDDLE> and s <> <MIDDLE >)
286 -- Checks moving the siwtch to the middle position
287 <> (check_switch_onoff(i) = true and s = <MIDDLE >)
288 else

27

APPENDIX A. FORMAL MODEL

289 check_switch_onoff(i) and s <> <MIDDLE >;
290
291
292 end Checklist
293
294 /*
295 //@LF always a good idea to run "qc" on your model. Here is its output→

. PO 21 and 22 show a problem.
296 //@LF silly me, this was my encoding with the cases missing one →

pattern :-). I can see yours has no issues. Good.
297
298 > qc
299 PO #1, PROVABLE by finite types in 0.002s
300 PO #2, PROVABLE by finite types in 0.0s
301 PO #3, PROVABLE by finite types in 0.0s
302 PO #4, PROVABLE by finite types in 0.0s
303 PO #5, PROVABLE by finite types in 0.0s
304 PO #6, PROVABLE by finite types in 0.0s
305 PO #7, PROVABLE by finite types in 0.0s
306 PO #8, PROVABLE by finite types in 0.0s
307 PO #9, PROVABLE by finite types in 0.001s
308 PO #10, PROVABLE by finite types in 0.001s
309 PO #11, PROVABLE by direct (body is total) in 0.003s
310 PO #12, PROVABLE by witness s = mk_Switch(<MIDDLE>, true) in 0.001s
311 PO #13, PROVABLE by direct (body is total) in 0.001s
312 PO #14, PROVABLE by witness k = mk_Knob(1, [-2]) in 0.0s
313 PO #15, PROVABLE by direct (body is total) in 0.0s
314 PO #16, PROVABLE by witness t = 0 in 0.0s
315 PO #17, PROVABLE by direct (body is total) in 0.001s
316 PO #18, PROVABLE by witness t = mk_Throttle(0, 0) in 0.001s
317 PO #19, PROVABLE by direct (body is total) in 0.002s
318 PO #20, PROVABLE by witness i = mk_ItemObject(<KNOB>, mk_Knob(1, [-1])→

) in 0.002s
319 PO #21, FAILED in 0.002s: Counterexample: type = <BUTTON>, object = →

mk_Knob(1, [-1])
320 Causes Error 4004: No cases apply for <BUTTON> in 'Checklist' (formal/→

checklist.vdmsl) at line 119:13
321 ----
322 ItemObject': total function obligation in 'Checklist' (formal/→

checklist.vdmsl) at line 118:13
323 (forall mk_ItemObject'(type, object):ItemObject'! &
324 is_(inv_ItemObject'(mk_ItemObject'!(type, object)), bool))
325
326 PO #22, FAILED by direct in 0.005s: Counterexample: type = <BUTTON>
327 PO #23, PROVABLE by witness type = <KNOB>, object = mk_Knob(1, [-1]) →

in 0.002s
328 PO #24, PROVABLE by direct (body is total) in 0.001s
329 PO #25, PROVABLE by witness i = mk_ItemAndChecklistItem(mk_ItemObject→

(<KNOB>, mk_Knob(1, [-1])), mk_ChecklistItem([], <KNOB>, <MIDDLE>,→
 true)) in 0.001s

330 PO #26, MAYBE in 0.003s
331 PO #27, MAYBE in 0.003s
332 PO #28, MAYBE in 0.002s
333 PO #29, PROVABLE by witness p = [mk_ChecklistItem([], <BUTTON>, <→

MIDDLE>, true)] in 0.001s
334 PO #30, MAYBE in 0.002s
335 PO #31, MAYBE in 0.001s
336 PO #32, MAYBE in 0.003s

28

APPENDIX A. FORMAL MODEL

337 PO #33, MAYBE in 0.002s
338 PO #34, MAYBE in 0.001s
339 PO #35, MAYBE in 0.002s
340 PO #36, MAYBE in 0.009s
341 PO #37, MAYBE in 0.008s
342 PO #38, MAYBE in 0.007s
343 PO #39, MAYBE in 0.009s
344 PO #40, MAYBE in 0.002s
345 PO #41, MAYBE in 0.001s
346 PO #42, MAYBE in 0.001s
347 PO #43, MAYBE in 0.002s
348 PO #44, MAYBE in 0.002s
349 PO #45, MAYBE in 0.003s
350 PO #46, MAYBE in 0.002s
351 PO #47, MAYBE in 0.002s
352 PO #48, MAYBE in 0.001s
353 PO #49, MAYBE in 0.001s
354 PO #50, MAYBE in 0.0s
355 PO #51, MAYBE in 0.0s
356 PO #52, MAYBE in 0.005s
357 PO #53, PROVABLE by trivial p in set (dom checklist) in 0.001s
358 PO #54, MAYBE in 0.006s
359 PO #55, MAYBE in 0.0s
360 PO #56, MAYBE in 0.001s
361 PO #57, MAYBE in 0.001s
362 PO #58, MAYBE in 0.001s
363 PO #59, MAYBE in 0.001s
364 PO #60, MAYBE in 0.001s
365 PO #61, MAYBE in 0.001s
366 PO #62, MAYBE in 0.0s
367 PO #63, PROVABLE by finite types in 0.001s
368 PO #64, PROVABLE by finite types in 0.001s
369 PO #65, PROVABLE by finite types in 0.001s
370 PO #66, MAYBE in 0.001s
371 >
372 */

29

Appendix B

Database

B.1 SQL Schemas

1 CREATE TABLE IF NOT EXISTS Project (
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 name TEXT NOT NULL,
4 aircraftType TEXT NOT NULL,
5 createdUTC TEXT NOT NULL,
6 modifiedUTC TEXT
7);
8

9 createProject:
10 INSERT INTO Project(name, aircraftType, createdUTC)
11 VALUES (?, ?, ?);
12

13 selectAllProjects:
14 SELECT * FROM Project;
15

16 selectProjectById:
17 SELECT * FROM Project
18 WHERE id = ?;
19

20 countProjects:
21 SELECT COUNT(*) FROM Project;

Listing B.2: SQL Schema for Project

30

APPENDIX B. DATABASE B.1. SQL SCHEMAS

1 CREATE TABLE IF NOT EXISTS Procedure (
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 projectId INTEGER NOT NULL,
4 name TEXT NOT NULL,
5 type TEXT NOT NULL,
6 description TEXT NOT NULL,
7 createdUTC TEXT NOT NULL,
8 modifiedUTC TEXT,
9 FOREIGN KEY (projectId) REFERENCES Project(id)

10);
11

12 createProcedure:
13 INSERT INTO Procedure(projectId, name, type, description, createdUTC)
14 VALUES (?, ?, ?, ?, ?);
15

16 selectProcedures:
17 SELECT * FROM Procedure
18 WHERE projectId = ?;
19

20 selectProcedureById:
21 SELECT * FROM Procedure
22 WHERE id = ?;
23

24 countProcedures:
25 SELECT COUNT(*) FROM Procedure
26 WHERE projectId = ?;

Listing B.3: SQL Schema for Procedure

1 CREATE TABLE IF NOT EXISTS Action (
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 procedureId INTEGER NOT NULL,
4 step INTEGER NOT NULL,
5 type TEXT NOT NULL,
6 goal TEXT NOT NULL,
7 FOREIGN KEY (procedureId) REFERENCES Procedure(id)
8);
9

10 createAction:
11 INSERT INTO Action(procedureId, step, type, goal)
12 VALUES (?, ?, ?, ?);
13

14 selectActions:
15 SELECT * FROM Action
16 WHERE procedureId = ?;
17

18 countActions:
19 SELECT COUNT(*) FROM Action
20 WHERE procedureId = ?;
21

22 deleteByProcedure:
23 DELETE FROM Action
24 WHERE procedureId = ?;

Listing B.4: SQL Schema for Action

31

B.1. SQL SCHEMAS APPENDIX B. DATABASE

1 CREATE TABLE IF NOT EXISTS Test (
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 procedureId INTEGER NOT NULL,
4 startUTC TEXT NOT NULL,
5 endUTC TEXT,
6 FOREIGN KEY (procedureId) REFERENCES Procedure(id)
7);
8

9 startTest:
10 INSERT INTO Test(procedureId, startUTC)
11 VALUES (?, ?);
12

13 endTest:
14 UPDATE Test
15 SET endUTC = ?
16 WHERE id = ?;
17

18 lastInsertedRowId:
19 SELECT last_insert_rowid();

Listing B.5: SQL Schema for Test

1 CREATE TABLE IF NOT EXISTS ActionResult (
2 id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
3 testId INTEGER NOT NULL,
4 actionId INTEGER NOT NULL,
5 initState TEXT NOT NULL,
6 endState TEXT,
7 startUTC TEXT NOT NULL,
8 endUTC TEXT,
9 FOREIGN KEY (testId) REFERENCES Test(id),

10 FOREIGN KEY (actionId) REFERENCES Action(id)
11);
12

13 startResult:
14 INSERT INTO ActionResult(testId, actionId, initState, startUTC)
15 VALUES (?, ?, ?, ?);
16

17 finishResult:
18 UPDATE ActionResult
19 SET endState = ?, endUTC = ?
20 WHERE id = ?;
21

22 lastInsertedRowId:
23 SELECT last_insert_rowid();

Listing B.6: SQL Schema for ActionResult

32

References

[1] Immanuel Barshi, Robert Mauro, Asaf Degani et al. Designing Flightdeck Procedures. eng.
Ames Research Center, Nov. 2016. url: https://ntrs.nasa.gov/citations/20160013263.

[2] Atul Gawande. The Checklist Manifesto: How To Get Things Right. Main Edition. Profile
Books, July 2010. isbn: 9781846683145.

[3] Civil Aviation Authority. Aircraft Emergencies: Considerations for air traffic controllers.
CAP 745. Mar. 2005. url: https://www.caa.co.uk/cap745.

[4] National Tranportation Safety Board. Loss of Thrust in Both Engines After Encountering
a Flock of Birds and Subsequent Ditching on the Hudson River. Technical Report PB2010-
910403. May 2010. url: https://www.ntsb.gov/investigations/Pages/DCA09MA026.
aspx.

[5] William R. Knecht and Michael Lenz. Causes of General Aviation Weather-Related, Non-
Fatal Incidents: Analysis Using NASA Aviation Safety Reporting System Data. Tech. rep.
DOT/FAA/AM-10/13. FAA Office of Aerospace Medicine Civil Aerospace Medical Institute,
Sept. 2010.

[6] Civil Aviation Authority. Guidance on the Design, Presentation and Use of Emergency and
Abnormal Checklists. CAP 676. Aug. 2006. url: https://www.caa.co.uk/cap745.

[7] Transport Safety Board of Canada. Aviation Investigation Report In-Flight Fire Leading
to Collision with Water Swissair Transport Limited McDonnell Douglas MD-11 HB-IWF
Peggy’s Cove, Nova Scotia 5 nm SW 2 September 1998. A98H0003. Feb. 2003. url: https:
//www.tsb.gc.ca/eng/rapports-reports/aviation/1998/a98h0003/a98h0003.pdf.

[8] National Tranportation Safety Board. Aircraft Accident Report Northwest Airlines, Inc�c-
Donnell Douglas DC-9-82, N312RC, Detroit Metropolitan Wayne County Airport Romu-
lus, Michigan. PB88-910406. Aug. 1987. url: https://www.ntsb.gov/investigations/
AccidentReports/Reports/AAR8805.pdf.

[9] NASA Langley Formal Methods Research Program. Langley Formal Methods Program •
What is Formal Methods. url: https://shemesh.larc.nasa.gov/fm/fm-what.html
(visited on 20/05/2024).

[10] Odile Laurent. ‘Using Formal Methods and Testability Concepts in the Avionics Systems
Validation and Verification (V&V) Process’. In: 2010 Third International Conference on
Software Testing, Verification and Validation. 2010, pp. 1–10. doi: 10.1109/ICST.2010.38.

[11] Nick Battle. VDMJ. url: https://github.com/nickbattle/vdmj (visited on 21/04/2024).
[12] Peter Gorm Larsen, Kenneth Lausdahl, Peter Jørgensen et al. Overture VDM-10 Tool Sup-

port: User Guide. TR-2010-02. Apr. 2013. Chap. 16, pp. 81–98. url: https://raw.github.
com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/
OvertureIDEUserGuide.pdf.

[13] Kyushu University. The VDM Toolbox API. Version 1.0. 2016. url: https://github.com/
vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf.

[14] Raoul-Gabriel Urma. ‘Alternative Languages for the JVM’. In: Java Magazine (July 2014).
url: https://www.oracle.com/technical-resources/articles/java/architect-
languages.html (visited on 05/05/2024).

[15] JetBrains s.r.o. Kotlin Programming Language. url: https://kotlinlang.org/ (visited on
21/04/2024).

[16] Google LLC. Kotlin and Android | Android Developers. url: https://developer.android.
com/kotlin (visited on 21/04/2024).

[17] OpenJFX. JavaFX. url: https://openjfx.io/ (visited on 21/04/2024).

33

https://ntrs.nasa.gov/citations/20160013263
https://www.caa.co.uk/cap745
https://www.ntsb.gov/investigations/Pages/DCA09MA026.aspx
https://www.ntsb.gov/investigations/Pages/DCA09MA026.aspx
https://www.caa.co.uk/cap745
https://www.tsb.gc.ca/eng/rapports-reports/aviation/1998/a98h0003/a98h0003.pdf
https://www.tsb.gc.ca/eng/rapports-reports/aviation/1998/a98h0003/a98h0003.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR8805.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR8805.pdf
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1109/ICST.2010.38
https://github.com/nickbattle/vdmj
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://raw.github.com/overturetool/documentation/editing/documentation/UserGuideOvertureIDE/OvertureIDEUserGuide.pdf
https://github.com/vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf
https://github.com/vdmtools/vdmtools/raw/stable/doc/api-man/ApiMan_a4E.pdf
https://www.oracle.com/technical-resources/articles/java/architect-languages.html
https://www.oracle.com/technical-resources/articles/java/architect-languages.html
https://kotlinlang.org/
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://openjfx.io/

REFERENCES REFERENCES

[18] FormDev Software GmbH. FlatLaf - Flat Look and Feel | FormDev. url: https://www.
formdev.com/flatlaf/ (visited on 21/04/2024).

[19] JetBrains s.r.o. Compose Multiplatform UI Framework | JetBrains | JetBrains: Developer
Tools for Professionals and Teams. url: https://www.jetbrains.com/lp/compose-
multiplatform/ (visited on 21/04/2024).

[20] Google LLC. Flutter - Build apps for any screen. url: https://flutter.dev/ (visited on
21/04/2024).

[21] Laminar Research. X-Plane | The world’s most advanced flight simulator. url: https://
www.x-plane.com/ (visited on 21/04/2024).

[22] Lockheed Martin Corporation. Prepar3D – Next Level Training. World class simulation. Be
ahead of ready with Prepar3D. url: https://www.prepar3d.com/ (visited on 21/04/2024).

[23] NASA Ames Research Center Diagnostics and Prognostics Group. X-Plane Connect. url:
https://github.com/nasa/XPlaneConnect (visited on 21/04/2024).

[24] Nick Battle. Release 4.5.0 Release · nickbattle/vdmj. url: https://github.com/nickbattle/
vdmj/releases/tag/4.5.0-release (visited on 22/05/2024).

[25] Koen Claessen and John Hughes. ‘Testing Monadic Code with QuickCheck’. In: Proceedings of
the 2002 ACM SIGPLAN Haskell Workshop 37 (June 2002). doi: 10.1145/636517.636527.

[26] Google LLC. Lists – Material Design 3. url: https://m3.material.io/components/
lists/guidelines (visited on 13/05/2024).

[27] Google LLC. Top app bar – Material Design 3. url: https://m3.material.io/components/
top-app-bar/guidelines (visited on 13/05/2024).

[28] Adriel Café. Overview | Voyager. url: https : / / voyager . adriel . cafe/ (visited on
13/05/2024).

[29] Koin and Kotzilla. Koin - The pragmatic Kotlin Injection Framework - developed by Kotzilla
and its open-source contributors. url: https://insert-koin.io/ (visited on 13/05/2024).

[30] Adriel Café. Koin integration | Voyager. url: https://voyager.adriel.cafe/screenmodel/
koin-integration (visited on 13/05/2024).

[31] Square, Inc. Overview - SQLDelight. Version 2.0.2. url: https://cashapp.github.io/
sqldelight/2.0.2/ (visited on 14/05/2024).

[32] Hipp, Wyrick & Company, Inc. How SQLite Is Tested. url: https://www.sqlite.org/
testing.html (visited on 14/05/2024).

[33] Docker Inc. What is a Container? | Docker. url: https://www.docker.com/resources/
what-container/ (visited on 14/05/2024).

[34] Nick Battle. vdmj/LICENCE at master · nickbattle/vdmj. url: https://github.com/
nickbattle/vdmj/blob/master/LICENCE (visited on 14/05/2024).

[35] Free Software Foundation, Inc. The GNU General Public License v3.0 - GNU Project - Free
Software Foundation. url: https://www.gnu.org/licenses/gpl-3.0.en.html (visited on
14/05/2024).

[36] Free Software Foundation, Inc. Frequently Asked Questions about the GNU Licenses - GNU
Project - Free Software Foundation. url: https://www.gnu.org/licenses/gpl-faq.html#
IfLibraryIsGPL (visited on 14/05/2024).

[37] Mike Frizzell. Maven Folder Structure Re-org by frizman21 · Pull Request #227 · nasa/X-
PlaneConnect. url: https://github.com/nasa/XPlaneConnect/pull/227 (visited on
13/05/2024).

[38] Jason Watkins. Publish Java library to maven repo · Issue #223 · nasa/XPlaneConnect -
Comment. url: https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-
870819396 (visited on 13/05/2024).

[39] JitPack. JitPack | Publish JVM and Android libraries. url: https://jitpack.io/ (visited
on 13/05/2024).

[40] Gradle Inc. gitRepository. url: https://docs.gradle.org/current/kotlin-dsl/gradle/
org.gradle.vcs/-source-control/git-repository.html (visited on 13/05/2024).

[41] Jendrik Johannes. Git repository at <url> did not contain a project publishing the specified
dependency. url: https://discuss.gradle.org/t/git-repository-at-url-did-
not-contain-a-project-publishing-the-specified-dependency/34019/2 (visited on
13/05/2024).

[42] Gradle Inc. Migrating Builds From Apache Maven. Version 8.7. 2023. url: https://docs.
gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_
conversion.

34

https://www.formdev.com/flatlaf/
https://www.formdev.com/flatlaf/
https://www.jetbrains.com/lp/compose-multiplatform/
https://www.jetbrains.com/lp/compose-multiplatform/
https://flutter.dev/
https://www.x-plane.com/
https://www.x-plane.com/
https://www.prepar3d.com/
https://github.com/nasa/XPlaneConnect
https://github.com/nickbattle/vdmj/releases/tag/4.5.0-release
https://github.com/nickbattle/vdmj/releases/tag/4.5.0-release
https://doi.org/10.1145/636517.636527
https://m3.material.io/components/lists/guidelines
https://m3.material.io/components/lists/guidelines
https://m3.material.io/components/top-app-bar/guidelines
https://m3.material.io/components/top-app-bar/guidelines
https://voyager.adriel.cafe/
https://insert-koin.io/
https://voyager.adriel.cafe/screenmodel/koin-integration
https://voyager.adriel.cafe/screenmodel/koin-integration
https://cashapp.github.io/sqldelight/2.0.2/
https://cashapp.github.io/sqldelight/2.0.2/
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://github.com/nickbattle/vdmj/blob/master/LICENCE
https://github.com/nickbattle/vdmj/blob/master/LICENCE
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
https://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
https://github.com/nasa/XPlaneConnect/pull/227
https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-870819396
https://github.com/nasa/XPlaneConnect/issues/223#issuecomment-870819396
https://jitpack.io/
https://docs.gradle.org/current/kotlin-dsl/gradle/org.gradle.vcs/-source-control/git-repository.html
https://docs.gradle.org/current/kotlin-dsl/gradle/org.gradle.vcs/-source-control/git-repository.html
https://discuss.gradle.org/t/git-repository-at-url-did-not-contain-a-project-publishing-the-specified-dependency/34019/2
https://discuss.gradle.org/t/git-repository-at-url-did-not-contain-a-project-publishing-the-specified-dependency/34019/2
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion
https://docs.gradle.org/current/userguide/migrating_from_maven.html#migmvn:automatic_conversion

REFERENCES REFERENCES

[43] The JUnit Team. JUnit 5 User Guide - Migrating from JUnit 4. url: https://github.com/
smyalygames/XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148 (vis-
ited on 15/05/2024).

35

https://github.com/smyalygames/XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148
https://github.com/smyalygames/XPlaneConnect/commit/e7b8d1e811999b4f8d7230f60ba94368e14f1148

	Introduction
	Scene
	Motivation
	Aim
	Objectives

	Background
	Hypothesis
	Safety in Aviation
	History
	Checklists

	Formal Methods
	Solution Stack
	Formal Model
	Checklist Tester
	Flight Simulator Plugin

	Design/Implementation
	Components
	Formal Method
	Checklist Tester
	Designing
	Compose Multiplatform
	Storing Data
	VDMJ Wrapper
	Connecting to the Flight Simulator
	Testing
	Creating Maven Package
	Submitting a Pull Request

	Scenarios
	Decisions

	Results
	Final Prototype
	Formal Model
	Checklist Tester
	Setting up Tests

	Problems Found
	LOC?
	Reflection
	Planning
	Implementation

	Time Spent

	Conclusion
	Changes
	Objectives
	What Next

	Formal Model
	Database
	SQL Schemas

	References

