mirror of
https://github.com/smyalygames/FiniteVolumeGPU_HIP.git
synced 2025-05-18 22:44:09 +02:00
234 lines
8.0 KiB
Plaintext
234 lines
8.0 KiB
Plaintext
#include "hip/hip_runtime.h"
|
|
/*
|
|
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
|
for the shallow water equations, described in
|
|
A. Kurganov & Guergana Petrova
|
|
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
|
Scheme for the Saint-Venant System Communications in Mathematical
|
|
Sciences, 5 (2007), 133-160.
|
|
|
|
Copyright (C) 2016 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
|
|
#include "common.h"
|
|
#include "SWECommon.h"
|
|
#include "limiters.h"
|
|
|
|
|
|
__device__
|
|
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
|
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
|
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
|
const float g_) {
|
|
//Index of thread within block
|
|
const int tx = threadIdx.x;
|
|
const int ty = threadIdx.y;
|
|
|
|
{
|
|
int j=ty;
|
|
const int l = j + 2; //Skip ghost cells
|
|
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
|
const int k = i + 1;
|
|
// Q at interface from the right and left
|
|
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
|
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
|
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
|
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
|
|
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
|
|
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
|
|
|
|
// Computed flux
|
|
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
|
F[0][j][i] = flux.x;
|
|
F[1][j][i] = flux.y;
|
|
F[2][j][i] = flux.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
__device__
|
|
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
|
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
|
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
|
const float g_) {
|
|
//Index of thread within block
|
|
const int tx = threadIdx.x;
|
|
const int ty = threadIdx.y;
|
|
|
|
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
|
const int l = j + 1;
|
|
{
|
|
int i=tx;
|
|
const int k = i + 2; //Skip ghost cells
|
|
// Q at interface from the right and left
|
|
// Note that we swap hu and hv
|
|
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
|
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
|
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
|
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
|
|
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
|
|
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
|
|
|
|
// Computed flux
|
|
// Note that we swap back
|
|
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
|
G[0][j][i] = flux.x;
|
|
G[1][j][i] = flux.z;
|
|
G[2][j][i] = flux.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
__device__ void minmodSlopeX(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
|
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
|
const float theta_) {
|
|
//Reconstruct slopes along x axis
|
|
for (int p=0; p<3; ++p) {
|
|
{
|
|
const int j = threadIdx.y+2;
|
|
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+3; i+=BLOCK_WIDTH) {
|
|
Qx[p][j-2][i-1] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Reconstructs a minmod slope for a whole block along the ordinate
|
|
*/
|
|
__device__ void minmodSlopeY(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
|
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
|
const float theta_) {
|
|
//Reconstruct slopes along y axis
|
|
for (int p=0; p<3; ++p) {
|
|
const int i = threadIdx.x + 2;
|
|
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+3; j+=BLOCK_HEIGHT) {
|
|
{
|
|
Qy[p][j-1][i-2] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
|
*/
|
|
extern "C" {
|
|
__global__ void KP07Kernel(
|
|
int nx_, int ny_,
|
|
float dx_, float dy_, float dt_,
|
|
float g_,
|
|
|
|
float theta_,
|
|
|
|
int step_order_,
|
|
int boundary_conditions_,
|
|
|
|
//Input h^n
|
|
float* h0_ptr_, int h0_pitch_,
|
|
float* hu0_ptr_, int hu0_pitch_,
|
|
float* hv0_ptr_, int hv0_pitch_,
|
|
|
|
//Output h^{n+1}
|
|
float* h1_ptr_, int h1_pitch_,
|
|
float* hu1_ptr_, int hu1_pitch_,
|
|
float* hv1_ptr_, int hv1_pitch_,
|
|
|
|
//Output CFL
|
|
float* cfl_) {
|
|
const unsigned int w = BLOCK_WIDTH;
|
|
const unsigned int h = BLOCK_HEIGHT;
|
|
const unsigned int gc_x = 2;
|
|
const unsigned int gc_y = 2;
|
|
const unsigned int vars = 3;
|
|
|
|
//Index of thread within block
|
|
const int tx = threadIdx.x;
|
|
const int ty = threadIdx.y;
|
|
|
|
//Index of cell within domain
|
|
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
|
|
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
|
|
|
//Shared memory variables
|
|
__shared__ float Q[3][h+4][w+4];
|
|
__shared__ float Qx[3][h+2][w+2];
|
|
__shared__ float Qy[3][h+2][w+2];
|
|
__shared__ float F[3][h+1][w+1];
|
|
__shared__ float G[3][h+1][w+1];
|
|
|
|
|
|
|
|
//Read into shared memory
|
|
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
|
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
|
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
|
|
|
|
|
//Reconstruct slopes along x and axis
|
|
minmodSlopeX(Q, Qx, theta_);
|
|
minmodSlopeY(Q, Qy, theta_);
|
|
__syncthreads();
|
|
|
|
|
|
//Compute fluxes along the x and y axis
|
|
computeFluxF(Q, Qx, F, g_);
|
|
computeFluxG(Q, Qy, G, g_);
|
|
__syncthreads();
|
|
|
|
|
|
//Sum fluxes and advance in time for all internal cells
|
|
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
|
|
const int i = tx + 2; //Skip local ghost cells, i.e., +2
|
|
const int j = ty + 2;
|
|
|
|
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
|
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
|
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
|
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
|
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
|
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
|
|
|
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
|
|
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
|
|
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
|
|
|
|
if (getOrder(step_order_) == 2 && getStep(step_order_) == 1) {
|
|
//Write to main memory
|
|
h_row[ti] = 0.5f*(h_row[ti] + Q[0][j][i]);
|
|
hu_row[ti] = 0.5f*(hu_row[ti] + Q[1][j][i]);
|
|
hv_row[ti] = 0.5f*(hv_row[ti] + Q[2][j][i]);
|
|
}
|
|
else {
|
|
h_row[ti] = Q[0][j][i];
|
|
hu_row[ti] = Q[1][j][i];
|
|
hv_row[ti] = Q[2][j][i];
|
|
}
|
|
}
|
|
|
|
//Compute the CFL for this block
|
|
if (cfl_ != NULL) {
|
|
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
|
}
|
|
}
|
|
} //extern "C" |