2024-06-09 22:48:06 +02:00

300 lines
12 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the FORCE flux
for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
from hip import hipblas
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
"""
Class that solves the SW equations using the Lax Friedrichs scheme
"""
class LxF (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
1,
block_width, block_height)
self.g = np.float32(g)
#Get cuda kernels
"""
module = context.get_module("cuda/SWE2D_LxF.cu",
defines={
'BLOCK_WIDTH': self.block_size[0],
'BLOCK_HEIGHT': self.block_size[1]
},
compile_args={
'no_extern_c': True,
'options': ["--use_fast_math"],
},
jit_compile_args={})
self.kernel = module.get_function("LxFKernel")
self.kernel.prepare("iiffffiPiPiPiPiPiPiP")
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
# Specify the relative path to the "cuda" directory
cuda_dir = os.path.join(current_dir, 'cuda')
#kernel source
kernel_file_path = os.path.abspath(os.path.join(cuda_dir, 'SWE2D_LxF.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
#headers
#common.h
header_file_path = os.path.abspath(os.path.join(cuda_dir, 'common.h'))
with open(header_file_path, 'r') as file:
header_common = file.read()
#SWECommon.h
header_file_path = os.path.abspath(os.path.join(cuda_dir, 'SWECommon.h'))
with open(header_file_path, 'r') as file:
header_EulerCommon = file.read()
#hip.hiprtc.hiprtcCreateProgram(const char *src, const char *name, int numHeaders, headers, includeNames)
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"LxFKernel", 2, [header_common.encode(),header_SWECommon.encode()], [b"common.h", b"SWECommon.h"]))
# Check if the program is created successfully
if prog is not None:
print("--This is <SWE2D_LxF.cu.hip>")
print("--HIPRTC program created successfully")
print()
else:
print("--Failed to create HIPRTC program")
print("--I stop:", err)
exit()
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .LxFKernel. for {arch}")
cflags = [b"--offload-arch="+arch, b"-O2", b"-D BLOCK_WIDTH="+ str(self.block_size[0]).encode(), b"-D BLOCK_HEIGHT=" + str(self.block_size[1]).encode()]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
# Check if the program is compiled successfully
if err is not None:
print("--Compilation:", err)
print("--The program is compiled successfully")
else:
print("--Compilation:", err)
print("--Failed to compile the program")
print("--I stop:", err)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
#Load the code as a module
self.module = hip_check(hip.hipModuleLoadData(code))
#Get the device kernel named named "LxFKernel"
self.kernel = hip_check(hip.hipModuleGetFunction(self.module, b"LxFKernel"))
print()
print("--Get the device kernel *LxFKernel* is created successfully--")
print("--kernel", self.kernel)
print()
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
#in HIP, the "DeviceArray" object doesn't have a 'fill' attribute
#self.cfl_data.fill(self.dt, stream=self.stream)
grid_dim_x, grid_dim_y, grid_dim_z = self.grid_size
data_h = np.zeros((grid_dim_x, grid_dim_y), dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
data_h.fill(self.dt)
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=(grid_dim_x, grid_dim_y))
hip_check(hip.hipMemcpyAsync(self.cfl_data,data_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice,self.stream))
#sets the memory region pointed to by x_d to zero asynchronously
#initiates the memset operation asynchronously
#hip_check(hip.hipMemsetAsync(self.cfl_data,0,num_bytes,self.stream))
def substep(self, dt, step_number):
#Cuda
"""
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.cfl_data.gpudata)
self.u0, self.u1 = self.u1, self.u0
"""
u00_strides0 = self.u0[0].data.shape[0]*np.float32().itemsize
u01_strides0 = self.u0[1].data.shape[0]*np.float32().itemsize
u02_strides0 = self.u0[2].data.shape[0]*np.float32().itemsize
u10_strides0 = self.u1[0].data.shape[0]*np.float32().itemsize
u11_strides0 = self.u1[1].data.shape[0]*np.float32().itemsize
u12_strides0 = self.u1[2].data.shape[0]*np.float32().itemsize
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*self.grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.cfl_data,
)
)
)
self.u0, self.u1 = self.u1, self.u0
#print("--Launching Kernel .LxFKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5