FiniteVolumeGPU_HIP/GPUSimulators/EE2D_KP07_dimsplit.py
2024-06-09 22:48:06 +02:00

652 lines
28 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the 2nd order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import sys
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
from hip import hipblas
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class EE2D_KP07_dimsplit (BaseSimulator):
"""
Initialization routine
rho: Density
rho_u: Momentum along x-axis
rho_v: Momentum along y-axis
E: energy
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis
dy: Grid cell spacing along y-axis
dt: Size of each timestep
g: Gravitational constant
gamma: Gas constant
p: pressure
"""
def __init__(self,
context,
rho, rho_u, rho_v, E,
nx, ny,
dx, dy,
g,
gamma,
theta=1.3,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=8):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height)
self.g = np.float32(g)
self.gamma = np.float32(gamma)
self.theta = np.float32(theta)
#Get cuda kernels
""" Cuda
module = context.get_module("cuda/EE2D_KP07_dimsplit.cu.hip",
defines={
'BLOCK_WIDTH': self.block_size[0],
'BLOCK_HEIGHT': self.block_size[1]
},
compile_args={
'no_extern_c': True,
'options': ["--use_fast_math"],
},
jit_compile_args={})
#compile and load to the device
self.kernel = module.get_function("KP07DimsplitKernel")
self.kernel.prepare("iiffffffiiPiPiPiPiPiPiPiPiPiiii")
"""
current_dir = os.path.dirname(os.path.abspath(__file__))
# Specify the relative path to the "cuda" directory
cuda_dir = os.path.join(current_dir, 'cuda')
#source code
kernel_file_path = os.path.abspath(os.path.join(cuda_dir, 'EE2D_KP07_dimsplit.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
#headers
#common.h
header_file_path = os.path.abspath(os.path.join(cuda_dir, 'common.h'))
with open(header_file_path, 'r') as file:
header_common = file.read()
#EulerCommon.h
header_file_path = os.path.abspath(os.path.join(cuda_dir, 'EulerCommon.h'))
with open(header_file_path, 'r') as file:
header_EulerCommon = file.read()
#limiters.h
header_file_path = os.path.abspath(os.path.join(cuda_dir, 'limiters.h'))
with open(header_file_path, 'r') as file:
header_limiters = file.read()
#hip.hiprtc.hiprtcCreateProgram(const char *src, const char *name, int numHeaders, headers, includeNames)
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"KP07DimsplitKernel", 3, [header_common.encode(),header_EulerCommon.encode(),header_limiters.encode()], [b"common.h",b"EulerCommon.h",b"limiters.h"]))
# Check if the program is created successfully
if prog is not None:
print("--This is <EE2D_KP07_dimsplit.cu.hip>")
print("--HIPRTC program created successfully")
print()
else:
print("--Failed to create HIPRTC program")
print("--I stop:", err)
exit()
#extract the arch of the device
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0)) #only one device 0
arch = props.gcnArchName
print(f"Compiling kernel for {arch}")
cflags = [b"--offload-arch="+arch, b"-O2", b"-D BLOCK_WIDTH="+ str(self.block_size[0]).encode(), b"-D BLOCK_HEIGHT=" + str(self.block_size[1]).encode()]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
# Check if the program is compiled successfully
if err is not None:
print("--Compilation:", err)
print("--The program is compiled successfully")
else:
print("--Compilation:", err)
print("--Failed to compile the program")
print("--I stop:", err)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
#Load the code as a module
self.module = hip_check(hip.hipModuleLoadData(code))
#Get the device kernel named "KP07DimsplitKernel"
self.kernel = hip_check(hip.hipModuleGetFunction(self.module, b"KP07DimsplitKernel"))
print()
print("--Get the device kernel *KP07DimsplitKernel* is created successfully--")
print("--kernel", self.kernel)
print()
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[rho, rho_u, rho_v, E])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
# init device array cfl_data
dt_x = np.min(self.dx / (np.abs(rho_u/rho) + np.sqrt(gamma*rho)))
dt_y = np.min(self.dy / (np.abs(rho_v/rho) + np.sqrt(gamma*rho)))
self.dt = min(dt_x, dt_y)
#in HIP, the "DeviceArray" object doesn't have a 'fill' attribute
#self.cfl_data.fill(self.dt, stream=self.stream)
grid_dim_x, grid_dim_y, grid_dim_z = self.grid_size
data_h = np.zeros((grid_dim_x, grid_dim_y), dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
data_h.fill(self.dt)
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=(grid_dim_x, grid_dim_y))
hip_check(hip.hipMemcpyAsync(self.cfl_data,data_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice,self.stream))
#sets the memory region pointed to by x_d to zero asynchronously
#initiates the memset operation asynchronously
#hip_check(hip.hipMemsetAsync(self.cfl_data,0,num_bytes,self.stream))
def substep(self, dt, step_number, external=True, internal=True):
self.substepDimsplit(0.5*dt, step_number, external, internal)
def substepDimsplit(self, dt, substep, external, internal):
u00_strides0 = self.u0[0].data.shape[0]*np.float32().itemsize
u01_strides0 = self.u0[1].data.shape[0]*np.float32().itemsize
u02_strides0 = self.u0[2].data.shape[0]*np.float32().itemsize
u03_strides0 = self.u0[3].data.shape[0]*np.float32().itemsize
u10_strides0 = self.u1[0].data.shape[0]*np.float32().itemsize
u11_strides0 = self.u1[1].data.shape[0]*np.float32().itemsize
u12_strides0 = self.u1[2].data.shape[0]*np.float32().itemsize
u13_strides0 = self.u1[3].data.shape[0]*np.float32().itemsize
if external and internal:
#print("COMPLETE DOMAIN (dt=" + str(dt) + ")")
""" Cuda
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
self.nx, self.ny)
"""
#hip.hipModuleLaunchKernel(f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, stream, kernelParams, extra)
#The argument grid/block requires 3 components x,y and z. in 2D z=1.
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*self.grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(0), ctypes.c_int(0),
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
)
)
)
#print("--External & Internal: Launching Kernel is ok")
return
if external and not internal:
###################################
# XXX: Corners are treated twice! #
###################################
ns_grid_size = (self.grid_size[0], 1, 1)
# NORTH
# (x0, y0) x (x1, y1)
# (0, ny-y_halo) x (nx, ny)
""" Cuda
self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, self.ny - int(self.u0[0].y_halo),
self.nx, self.ny)
"""
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*ns_grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(0), ctypes.c_int(self.ny - self.u0[0].y_halo),
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
)
)
)
hip_check(hip.hipStreamSynchronize(self.stream))
#print()
#print("--I m at the NORTH:")
#print()
# SOUTH
# (x0, y0) x (x1, y1)
# (0, 0) x (nx, y_halo)
""" Cuda
self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
self.nx, int(self.u0[0].y_halo))
"""
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*ns_grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(0), ctypes.c_int(0),
ctypes.c_int(self.nx), ctypes.c_int(self.u0[0].y_halo),
)
)
)
hip_check(hip.hipStreamSynchronize(self.stream))
we_grid_size = (1, self.grid_size[1], 1)
# WEST
# (x0, y0) x (x1, y1)
# (0, 0) x (x_halo, ny)
""" Cuda
self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
0, 0,
int(self.u0[0].x_halo), self.ny)
"""
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*we_grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(0), ctypes.c_int(0),
ctypes.c_int(self.u0[0].x_halo), ctypes.c_int(self.ny),
)
)
)
hip_check(hip.hipStreamSynchronize(self.stream))
# EAST
# (x0, y0) x (x1, y1)
# (nx-x_halo, 0) x (nx, ny)
""" Cuda
self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
self.nx - int(self.u0[0].x_halo), 0,
self.nx, self.ny)
"""
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*we_grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(self.nx - self.u0[0].x_halo), ctypes.c_int(0),
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
)
)
)
# print("--External and not Internal: Launching Kernel is ok")
return
if internal and not external:
# INTERNAL DOMAIN
# (x0, y0) x (x1, y1)
# (x_halo, y_halo) x (nx - x_halo, ny - y_halo)
"""
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.internal_stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
int(self.u0[0].x_halo), int(self.u0[0].y_halo),
self.nx - int(self.u0[0].x_halo), self.ny - int(self.u0[0].y_halo))
"""
hip_check(
hip.hipModuleLaunchKernel(
self.kernel,
*self.grid_size, #grid
*self.block_size, #block
sharedMemBytes=0, #65536,
stream=self.internal_stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
self.u0[0].data, ctypes.c_int(u00_strides0),
self.u0[1].data, ctypes.c_int(u01_strides0),
self.u0[2].data, ctypes.c_int(u02_strides0),
self.u0[3].data, ctypes.c_int(u03_strides0),
self.u1[0].data, ctypes.c_int(u10_strides0),
self.u1[1].data, ctypes.c_int(u11_strides0),
self.u1[2].data, ctypes.c_int(u12_strides0),
self.u1[3].data, ctypes.c_int(u13_strides0),
self.cfl_data,
ctypes.c_int(self.u0[0].x_halo), ctypes.c_int(self.u0[0].y_halo),
ctypes.c_int(self.nx - self.u0[0].x_halo), ctypes.c_int(self.ny - self.u0[0].y_halo),
)
)
)
# print("--Internal and not External: Launching Kernel is ok")
return
def swapBuffers(self):
self.u0, self.u1 = self.u1, self.u0
return
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
return
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5