2024-02-27 15:49:56 +01:00

253 lines
10 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class KP07 (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
theta=1.3,
cfl_scale=0.9,
order=2,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
order,
block_width, block_height);
self.g = np.float32(g)
self.theta = np.float32(theta)
self.order = np.int32(order)
#Get kernels
# module = context.get_module("cuda/SWE2D_KP07.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("KP07Kernel")
# self.kernel.prepare("iifffffiiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_KP07.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"KP07Kernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .KP07Kernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"KP07Kernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
self.substepRK(dt, step_number)
def substepRK(self, dt, substep):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.theta,
# Simulator.stepOrderToCodedInt(step=substep, order=self.order),
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.theta),
Simulator.stepOrderToCodedInt(step=substep, order=self.order),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .KP07Kernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
return max_dt*0.5**(self.order-1)