/*
These CUDA functions implement different types of numerical flux
functions for the shallow water equations
Copyright (C) 2016, 2017, 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
#include "limiters.h"
template
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
float shmem[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
const float dx_, const float dy_, const float gamma_,
float* output_) {
//Index of thread within block
const int tx = threadIdx.x + gc_x;
const int ty = threadIdx.y + gc_y;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + tx;
const int tj = blockDim.y*blockIdx.y + ty;
//Only internal cells
if (ti < nx_+gc_x && tj < ny_+gc_y) {
const float rho = Q[0][ty][tx];
const float u = Q[1][ty][tx] / rho;
const float v = Q[2][ty][tx] / rho;
const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_*rho));
const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_*rho));
shmem[ty][tx] = fminf(max_u, max_v);
}
__syncthreads();
//One row of threads loop over all rows
if (ti < nx_+gc_x && tj < ny_+gc_y) {
if (ty == gc_y) {
float min_val = shmem[ty][tx];
const int max_y = min(h, ny_+gc_y - tj);
for (int j=gc_y; j h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
//Upwind selection
if (S_l >= 0.0f) {
return F_func(Q_l, P_l);
}
else if (S_r <= 0.0f) {
return F_func(Q_r, P_r);
}
//Or estimate flux in the star region
else {
const float4 F_l = F_func(Q_l, P_l);
const float4 F_r = F_func(Q_r, P_r);
const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
return flux;
}
}
/**
* Central upwind flux function
*/
__device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) {
const float Pp = pressure(Qp, gamma);
const float4 Fp = F_func(Qp, Pp);
const float up = Qp.y / Qp.x; // rho*u / rho
const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho)
const float Pm = pressure(Qm, gamma);
const float4 Fm = F_func(Qm, Pm);
const float um = Qm.y / Qm.x; // rho*u / rho
const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho)
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
}