/* This OpenCL kernel implements the Kurganov-Petrova numerical scheme for the shallow water equations, described in A. Kurganov & Guergana Petrova A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System Communications in Mathematical Sciences, 5 (2007), 133-160. Copyright (C) 2016 SINTEF ICT This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "common.h" #include "SWECommon.h" #include "limiters.h" template __device__ void computeFluxF(float Q[3][h+2*gc_y][w+2*gc_x], float Qx[3][h+2*gc_y][w+2*gc_x], float F[3][h+2*gc_y][w+2*gc_x], const float g_, const float dx_, const float dt_) { for (int j=threadIdx.y; j __device__ void computeFluxG(float Q[3][h+2*gc_y][w+2*gc_x], float Qy[3][h+2*gc_y][w+2*gc_x], float G[3][h+2*gc_y][w+2*gc_x], const float g_, const float dy_, const float dt_) { for (int j=threadIdx.y+1; j( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_); readBlock(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_); readBlock(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_); if (step_ == 0) { //Along X minmodSlopeX(Q, Qx, theta_); __syncthreads(); computeFluxF(Q, Qx, F, g_, dx_, dt_); __syncthreads(); evolveF(Q, F, dx_, dt_); __syncthreads(); //Along Y minmodSlopeY(Q, Qx, theta_); __syncthreads(); computeFluxG(Q, Qx, F, g_, dy_, dt_); __syncthreads(); evolveG(Q, F, dy_, dt_); __syncthreads(); } else { //Along Y minmodSlopeY(Q, Qx, theta_); __syncthreads(); computeFluxG(Q, Qx, F, g_, dy_, dt_); __syncthreads(); evolveG(Q, F, dy_, dt_); __syncthreads(); //Along X minmodSlopeX(Q, Qx, theta_); __syncthreads(); computeFluxF(Q, Qx, F, g_, dx_, dt_); __syncthreads(); evolveF(Q, F, dx_, dt_); __syncthreads(); } // Write to main memory for all internal cells writeBlock( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1); writeBlock(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1); writeBlock(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1); //Compute the CFL for this block if (cfl_ != NULL) { writeCfl(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_); } } } // extern "C"