#include "hip/hip_runtime.h" /* This kernel implements the Central Upwind flux function to solve the Euler equations Copyright (C) 2018 SINTEF Digital This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "common.h" #include "EulerCommon.h" #include "limiters.h" __device__ void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4], const float gamma_, const float dx_, const float dt_) { for (int j=threadIdx.y; j( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1); readBlock(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1); readBlock(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1); readBlock( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1); //Step 0 => evolve x first, then y if (step_ == 0) { //Compute fluxes along the x axis and evolve minmodSlopeX(Q, Qx, theta_); __syncthreads(); computeFluxF(Q, Qx, F, gamma_, dx_, dt_); __syncthreads(); evolveF(Q, F, dx_, dt_); __syncthreads(); //Compute fluxes along the y axis and evolve minmodSlopeY(Q, Qx, theta_); __syncthreads(); computeFluxG(Q, Qx, F, gamma_, dy_, dt_); __syncthreads(); evolveG(Q, F, dy_, dt_); __syncthreads(); //Gravity source term if (g_ > 0.0f) { const int i = threadIdx.x + gc_x; const int j = threadIdx.y + gc_y; const float rho_v = Q[2][j][i]; Q[2][j][i] -= g_*Q[0][j][i]*dt_; Q[3][j][i] -= g_*rho_v*dt_; __syncthreads(); } } //Step 1 => evolve y first, then x else { //Compute fluxes along the y axis and evolve minmodSlopeY(Q, Qx, theta_); __syncthreads(); computeFluxG(Q, Qx, F, gamma_, dy_, dt_); __syncthreads(); evolveG(Q, F, dy_, dt_); __syncthreads(); //Compute fluxes along the x axis and evolve minmodSlopeX(Q, Qx, theta_); __syncthreads(); computeFluxF(Q, Qx, F, gamma_, dx_, dt_); __syncthreads(); evolveF(Q, F, dx_, dt_); __syncthreads(); //Gravity source term if (g_ > 0.0f) { const int i = threadIdx.x + gc_x; const int j = threadIdx.y + gc_y; const float rho_v = Q[2][j][i]; Q[2][j][i] -= g_*Q[0][j][i]*dt_; Q[3][j][i] -= g_*rho_v*dt_; __syncthreads(); } } // Write to main memory for all internal cells writeBlock( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1); writeBlock(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1); writeBlock(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1); writeBlock( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1); //Compute the CFL for this block if (cfl_ != NULL) { writeCfl(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_); } } } // extern "C"