#include "hip/hip_runtime.h"
/*
This kernel implements the Central Upwind flux function to
solve the Euler equations
Copyright (C) 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "common.h"
#include "EulerCommon.h"
#include "limiters.h"
__device__
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG(Q, F, dy_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF(Q, F, dx_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
// Write to main memory for all internal cells
writeBlock( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_);
}
}
} // extern "C"