/* These CUDA functions implement different types of numerical flux functions for the shallow water equations Copyright (C) 2016, 2017, 2018 SINTEF Digital This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include "limiters.h" template __device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x], float shmem[h+2*gc_y][w+2*gc_x], const int nx_, const int ny_, const float dx_, const float dy_, const float gamma_, float* output_) { //Index of thread within block const int tx = threadIdx.x + gc_x; const int ty = threadIdx.y + gc_y; //Index of cell within domain const int ti = blockDim.x*blockIdx.x + tx; const int tj = blockDim.y*blockIdx.y + ty; //Only internal cells if (ti < nx_+gc_x && tj < ny_+gc_y) { const float rho = Q[0][ty][tx]; const float u = Q[1][ty][tx] / rho; const float v = Q[2][ty][tx] / rho; const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_*rho)); const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_*rho)); shmem[ty][tx] = fminf(max_u, max_v); } __syncthreads(); //One row of threads loop over all rows if (ti < nx_+gc_x && tj < ny_+gc_y) { if (ty == gc_y) { float min_val = shmem[ty][tx]; const int max_y = min(h, ny_+gc_y - tj); for (int j=gc_y; j h_l) ? q_l_tmp : 1.0f; const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f; // Compute wave speed estimates const float S_l = u_l - c_l*q_l; const float S_r = u_r + c_r*q_r; //Upwind selection if (S_l >= 0.0f) { return F_func(Q_l, P_l); } else if (S_r <= 0.0f) { return F_func(Q_r, P_r); } //Or estimate flux in the star region else { const float4 F_l = F_func(Q_l, P_l); const float4 F_r = F_func(Q_r, P_r); const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l); return flux; } } /** * Central upwind flux function */ __device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) { const float Pp = pressure(Qp, gamma); const float4 Fp = F_func(Qp, Pp); const float up = Qp.y / Qp.x; // rho*u / rho const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho) const float Pm = pressure(Qm, gamma); const float4 Fm = F_func(Qm, Pm); const float um = Qm.y / Qm.x; // rho*u / rho const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho) const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am); }