mirror of
https://github.com/smyalygames/FiniteVolumeGPU_HIP.git
synced 2025-05-18 14:34:12 +02:00
Compare commits
6 Commits
aa21733806
...
6d9f36968d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
6d9f36968d | ||
![]() |
5b925cdb42 | ||
![]() |
b054a4dbcd | ||
![]() |
2e5cf88eef | ||
![]() |
80afd31286 | ||
![]() |
e2306406a7 |
@ -35,7 +35,7 @@ import gc
|
|||||||
import netCDF4
|
import netCDF4
|
||||||
import json
|
import json
|
||||||
|
|
||||||
from tqdm import trange
|
from tqdm import tqdm
|
||||||
|
|
||||||
#import pycuda.compiler as cuda_compiler
|
#import pycuda.compiler as cuda_compiler
|
||||||
#import pycuda.gpuarray
|
#import pycuda.gpuarray
|
||||||
@ -181,10 +181,10 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
|
|||||||
|
|
||||||
#Start simulation loop
|
#Start simulation loop
|
||||||
# progress_printer = ProgressPrinter(save_times[-1], print_every=10)
|
# progress_printer = ProgressPrinter(save_times[-1], print_every=10)
|
||||||
for k in trange(len(save_times)):
|
for k, t_step in tqdm(enumerate(t_steps), desc="Simulation Loop"):
|
||||||
#Get target time and step size there
|
#Get target time and step size there
|
||||||
t_step = t_steps[k]
|
# t_step = t_steps[k]
|
||||||
t_end = save_times[k]
|
# t_end = save_times[k]
|
||||||
|
|
||||||
#Sanity check simulator
|
#Sanity check simulator
|
||||||
try:
|
try:
|
||||||
@ -196,7 +196,7 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
|
|||||||
profiling_data_sim_runner["start"]["t_full_step"] += time.time()
|
profiling_data_sim_runner["start"]["t_full_step"] += time.time()
|
||||||
|
|
||||||
#Simulate
|
#Simulate
|
||||||
if (t_step > 0.0):
|
if t_step > 0.0:
|
||||||
sim.simulate(t_step, dt)
|
sim.simulate(t_step, dt)
|
||||||
|
|
||||||
profiling_data_sim_runner["end"]["t_full_step"] += time.time()
|
profiling_data_sim_runner["end"]["t_full_step"] += time.time()
|
||||||
@ -217,7 +217,7 @@ def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names
|
|||||||
# if (print_string):
|
# if (print_string):
|
||||||
# logger.debug(print_string)
|
# logger.debug(print_string)
|
||||||
|
|
||||||
logger.debug("Simulated to t={:f} in {:d} timesteps (average dt={:f})".format(t_end, sim.simSteps(), sim.simTime() / sim.simSteps()))
|
logger.debug("Simulated to t={:f} in {:d} timesteps (average dt={:f})".format(save_times[-1], sim.simSteps(), sim.simTime() / sim.simSteps()))
|
||||||
|
|
||||||
return outdata.filename, profiling_data_sim_runner, sim.profiling_data_mpi
|
return outdata.filename, profiling_data_sim_runner, sim.profiling_data_mpi
|
||||||
#return outdata.filename
|
#return outdata.filename
|
||||||
@ -308,7 +308,7 @@ class IPEngine(object):
|
|||||||
import ipyparallel
|
import ipyparallel
|
||||||
self.cluster = ipyparallel.Client()#profile='mpi')
|
self.cluster = ipyparallel.Client()#profile='mpi')
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
while(len(self.cluster.ids) != n_engines):
|
while len(self.cluster.ids) != n_engines:
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
self.logger.info("Waiting for cluster...")
|
self.logger.info("Waiting for cluster...")
|
||||||
self.cluster = ipyparallel.Client()#profile='mpi')
|
self.cluster = ipyparallel.Client()#profile='mpi')
|
||||||
|
@ -206,7 +206,7 @@ class BaseSimulator(object):
|
|||||||
update_dt = False
|
update_dt = False
|
||||||
self.dt = dt
|
self.dt = dt
|
||||||
|
|
||||||
for _ in tqdm(range(math.ceil(t_end / self.dt))):
|
for _ in tqdm(range(math.ceil((t_end - t_start) / self.dt)), desc="Simulation"):
|
||||||
# Update dt every 100 timesteps and cross your fingers it works
|
# Update dt every 100 timesteps and cross your fingers it works
|
||||||
# for the next 100
|
# for the next 100
|
||||||
# TODO this is probably broken now after fixing the "infinite" loop
|
# TODO this is probably broken now after fixing the "infinite" loop
|
||||||
|
Binary file not shown.
@ -70,7 +70,7 @@ def hip_check(call_result):
|
|||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if(args.profile):
|
if args.profile:
|
||||||
profiling_data = {}
|
profiling_data = {}
|
||||||
# profiling: total run time
|
# profiling: total run time
|
||||||
t_total_start = time.time()
|
t_total_start = time.time()
|
||||||
@ -79,6 +79,8 @@ if(args.profile):
|
|||||||
|
|
||||||
# Get MPI COMM to use
|
# Get MPI COMM to use
|
||||||
comm = MPI.COMM_WORLD
|
comm = MPI.COMM_WORLD
|
||||||
|
size = comm.Get_size()
|
||||||
|
rank = comm.Get_rank()
|
||||||
|
|
||||||
|
|
||||||
####
|
####
|
||||||
@ -86,7 +88,7 @@ comm = MPI.COMM_WORLD
|
|||||||
####
|
####
|
||||||
log_level_console = 20
|
log_level_console = 20
|
||||||
log_level_file = 10
|
log_level_file = 10
|
||||||
log_filename = 'mpi_' + str(comm.rank) + '.log'
|
log_filename = 'mpi_' + str(rank) + '.log'
|
||||||
logger = logging.getLogger('GPUSimulators')
|
logger = logging.getLogger('GPUSimulators')
|
||||||
logger.setLevel(min(log_level_console, log_level_file))
|
logger.setLevel(min(log_level_console, log_level_file))
|
||||||
|
|
||||||
@ -110,7 +112,7 @@ logger.info("File logger using level %s to %s",
|
|||||||
# Initialize MPI grid etc
|
# Initialize MPI grid etc
|
||||||
####
|
####
|
||||||
logger.info("Creating MPI grid")
|
logger.info("Creating MPI grid")
|
||||||
grid = MPISimulator.MPIGrid(MPI.COMM_WORLD)
|
grid = MPISimulator.MPIGrid(comm)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
job_id = int(os.environ["SLURM_JOB_ID"])
|
job_id = int(os.environ["SLURM_JOB_ID"])
|
||||||
@ -152,7 +154,7 @@ gamma = 1.4
|
|||||||
#save_times = np.linspace(0, 0.000099, 11)
|
#save_times = np.linspace(0, 0.000099, 11)
|
||||||
#save_times = np.linspace(0, 0.000099, 2)
|
#save_times = np.linspace(0, 0.000099, 2)
|
||||||
save_times = np.linspace(0, 0.0000999, 2)
|
save_times = np.linspace(0, 0.0000999, 2)
|
||||||
outfile = "mpi_out_" + str(MPI.COMM_WORLD.rank) + ".nc"
|
outfile = "mpi_out_" + str(rank) + ".nc"
|
||||||
save_var_names = ['rho', 'rho_u', 'rho_v', 'E']
|
save_var_names = ['rho', 'rho_u', 'rho_v', 'E']
|
||||||
|
|
||||||
arguments = IC.genKelvinHelmholtz(nx, ny, gamma, grid=grid)
|
arguments = IC.genKelvinHelmholtz(nx, ny, gamma, grid=grid)
|
||||||
@ -160,7 +162,7 @@ arguments['context'] = cuda_context
|
|||||||
arguments['theta'] = 1.2
|
arguments['theta'] = 1.2
|
||||||
arguments['grid'] = grid
|
arguments['grid'] = grid
|
||||||
|
|
||||||
if(args.profile):
|
if args.profile:
|
||||||
t_init_end = time.time()
|
t_init_end = time.time()
|
||||||
t_init = t_init_end - t_init_start
|
t_init = t_init_end - t_init_start
|
||||||
profiling_data["t_init"] = t_init
|
profiling_data["t_init"] = t_init
|
||||||
@ -181,14 +183,14 @@ def genSim(grid, **kwargs):
|
|||||||
(outfile, sim_runner_profiling_data, sim_profiling_data) = Common.runSimulation(
|
(outfile, sim_runner_profiling_data, sim_profiling_data) = Common.runSimulation(
|
||||||
genSim, arguments, outfile, save_times, save_var_names, dt)
|
genSim, arguments, outfile, save_times, save_var_names, dt)
|
||||||
|
|
||||||
if(args.profile):
|
if args.profile:
|
||||||
t_total_end = time.time()
|
t_total_end = time.time()
|
||||||
t_total = t_total_end - t_total_start
|
t_total = t_total_end - t_total_start
|
||||||
profiling_data["t_total"] = t_total
|
profiling_data["t_total"] = t_total
|
||||||
print("Total run time on rank " + str(MPI.COMM_WORLD.rank) + " is " + str(t_total) + " s")
|
print("Total run time on rank " + str(rank) + " is " + str(t_total) + " s")
|
||||||
|
|
||||||
# write profiling to json file
|
# write profiling to json file
|
||||||
if(args.profile and MPI.COMM_WORLD.rank == 0):
|
if args.profile and rank == 0:
|
||||||
job_id = ""
|
job_id = ""
|
||||||
if "SLURM_JOB_ID" in os.environ:
|
if "SLURM_JOB_ID" in os.environ:
|
||||||
job_id = int(os.environ["SLURM_JOB_ID"])
|
job_id = int(os.environ["SLURM_JOB_ID"])
|
||||||
@ -199,7 +201,7 @@ if(args.profile and MPI.COMM_WORLD.rank == 0):
|
|||||||
str(job_id) + "_" + str(allocated_nodes) + "_nodes_and_" + str(allocated_gpus) + "_GPUs_profiling.json"
|
str(job_id) + "_" + str(allocated_nodes) + "_nodes_and_" + str(allocated_gpus) + "_GPUs_profiling.json"
|
||||||
profiling_data["outfile"] = outfile
|
profiling_data["outfile"] = outfile
|
||||||
else:
|
else:
|
||||||
profiling_file = "MPI_" + str(MPI.COMM_WORLD.size) + "_procs_and_" + str(num_cuda_devices) + "_GPUs_profiling.json"
|
profiling_file = "MPI_" + str(size) + "_procs_and_" + str(num_cuda_devices) + "_GPUs_profiling.json"
|
||||||
|
|
||||||
for stage in sim_runner_profiling_data["start"].keys():
|
for stage in sim_runner_profiling_data["start"].keys():
|
||||||
profiling_data[stage] = sim_runner_profiling_data["end"][stage] - sim_runner_profiling_data["start"][stage]
|
profiling_data[stage] = sim_runner_profiling_data["end"][stage] - sim_runner_profiling_data["start"][stage]
|
||||||
@ -214,7 +216,7 @@ if(args.profile and MPI.COMM_WORLD.rank == 0):
|
|||||||
|
|
||||||
profiling_data["slurm_job_id"] = job_id
|
profiling_data["slurm_job_id"] = job_id
|
||||||
profiling_data["n_cuda_devices"] = str(num_cuda_devices)
|
profiling_data["n_cuda_devices"] = str(num_cuda_devices)
|
||||||
profiling_data["n_processes"] = str(MPI.COMM_WORLD.size)
|
profiling_data["n_processes"] = str(size)
|
||||||
profiling_data["git_hash"] = Common.getGitHash()
|
profiling_data["git_hash"] = Common.getGitHash()
|
||||||
profiling_data["git_status"] = Common.getGitStatus()
|
profiling_data["git_status"] = Common.getGitStatus()
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user