mirror of
https://github.com/smyalygames/FiniteVolumeGPU_HIP.git
synced 2025-11-30 09:47:57 +01:00
convert cuda-codes located in /cuda to hip
This commit is contained in:
250
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu
Normal file
250
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu
Normal file
@@ -0,0 +1,250 @@
|
||||
/*
|
||||
This kernel implements the Central Upwind flux function to
|
||||
solve the Euler equations
|
||||
|
||||
Copyright (C) 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "EulerCommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float gamma_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float4 Q_rl = make_float4(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1],
|
||||
Q[3][j][i+1] - 0.5f*Qx[3][j][i+1]);
|
||||
const float4 Q_rr = make_float4(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1],
|
||||
Q[3][j][i+1] + 0.5f*Qx[3][j][i+1]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i],
|
||||
Q[3][j][i] - 0.5f*Qx[3][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i],
|
||||
Q[3][j][i] + 0.5f*Qx[3][j][i]);
|
||||
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
//const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
F[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float gamma_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float4 Q_rl = make_float4(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i],
|
||||
Q[3][j+1][i] - 0.5f*Qy[3][j+1][i]);
|
||||
const float4 Q_rr = make_float4(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i],
|
||||
Q[3][j+1][i] + 0.5f*Qy[3][j+1][i]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i],
|
||||
Q[3][j][i] - 0.5f*Qy[3][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i],
|
||||
Q[3][j][i] + 0.5f*Qy[3][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
//const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
G[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
float gamma_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* rho0_ptr_, int rho0_pitch_,
|
||||
float* rho_u0_ptr_, int rho_u0_pitch_,
|
||||
float* rho_v0_ptr_, int rho_v0_pitch_,
|
||||
float* E0_ptr_, int E0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* rho1_ptr_, int rho1_pitch_,
|
||||
float* rho_u1_ptr_, int rho_u1_pitch_,
|
||||
float* rho_v1_ptr_, int rho_v1_pitch_,
|
||||
float* E1_ptr_, int E1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_,
|
||||
|
||||
//Subarea of internal domain to compute
|
||||
int x0=0, int y0=0,
|
||||
int x1=0, int y1=0) {
|
||||
|
||||
if(x1 == 0)
|
||||
x1 = nx_;
|
||||
|
||||
if(y1 == 0)
|
||||
y1 = ny_;
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 4;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[4][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float Qx[4][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[4][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Gravity source term
|
||||
if (g_ > 0.0f) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const float rho_v = Q[2][j][i];
|
||||
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
|
||||
Q[3][j][i] -= g_*rho_v*dt_;
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Gravity source term
|
||||
if (g_ > 0.0f) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const float rho_v = Q[2][j][i];
|
||||
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
|
||||
Q[3][j][i] -= g_*rho_v*dt_;
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // extern "C"
|
||||
251
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu.hip
Normal file
251
GPUSimulators/cuda/EE2D_KP07_dimsplit.cu.hip
Normal file
@@ -0,0 +1,251 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This kernel implements the Central Upwind flux function to
|
||||
solve the Euler equations
|
||||
|
||||
Copyright (C) 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "EulerCommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float gamma_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float4 Q_rl = make_float4(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1],
|
||||
Q[3][j][i+1] - 0.5f*Qx[3][j][i+1]);
|
||||
const float4 Q_rr = make_float4(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1],
|
||||
Q[3][j][i+1] + 0.5f*Qx[3][j][i+1]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i],
|
||||
Q[3][j][i] - 0.5f*Qx[3][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i],
|
||||
Q[3][j][i] + 0.5f*Qx[3][j][i]);
|
||||
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
//const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
F[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float gamma_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float4 Q_rl = make_float4(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i],
|
||||
Q[3][j+1][i] - 0.5f*Qy[3][j+1][i]);
|
||||
const float4 Q_rr = make_float4(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i],
|
||||
Q[3][j+1][i] + 0.5f*Qy[3][j+1][i]);
|
||||
|
||||
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i],
|
||||
Q[3][j][i] - 0.5f*Qy[3][j][i]);
|
||||
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i],
|
||||
Q[3][j][i] + 0.5f*Qy[3][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
|
||||
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
|
||||
//const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
G[3][j][i] = flux.w;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
float gamma_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* rho0_ptr_, int rho0_pitch_,
|
||||
float* rho_u0_ptr_, int rho_u0_pitch_,
|
||||
float* rho_v0_ptr_, int rho_v0_pitch_,
|
||||
float* E0_ptr_, int E0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* rho1_ptr_, int rho1_pitch_,
|
||||
float* rho_u1_ptr_, int rho_u1_pitch_,
|
||||
float* rho_v1_ptr_, int rho_v1_pitch_,
|
||||
float* E1_ptr_, int E1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_,
|
||||
|
||||
//Subarea of internal domain to compute
|
||||
int x0=0, int y0=0,
|
||||
int x1=0, int y1=0) {
|
||||
|
||||
if(x1 == 0)
|
||||
x1 = nx_;
|
||||
|
||||
if(y1 == 0)
|
||||
y1 = ny_;
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 4;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[4][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float Qx[4][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[4][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Gravity source term
|
||||
if (g_ > 0.0f) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const float rho_v = Q[2][j][i];
|
||||
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
|
||||
Q[3][j][i] -= g_*rho_v*dt_;
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Gravity source term
|
||||
if (g_ > 0.0f) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const float rho_v = Q[2][j][i];
|
||||
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
|
||||
Q[3][j][i] -= g_*rho_v*dt_;
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
writeBlock<w, h, gc_x, gc_y>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // extern "C"
|
||||
187
GPUSimulators/cuda/EulerCommon.h
Normal file
187
GPUSimulators/cuda/EulerCommon.h
Normal file
@@ -0,0 +1,187 @@
|
||||
/*
|
||||
These CUDA functions implement different types of numerical flux
|
||||
functions for the shallow water equations
|
||||
|
||||
Copyright (C) 2016, 2017, 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float shmem[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_,
|
||||
const float dx_, const float dy_, const float gamma_,
|
||||
float* output_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x + gc_x;
|
||||
const int ty = threadIdx.y + gc_y;
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + tx;
|
||||
const int tj = blockDim.y*blockIdx.y + ty;
|
||||
|
||||
//Only internal cells
|
||||
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
||||
const float rho = Q[0][ty][tx];
|
||||
const float u = Q[1][ty][tx] / rho;
|
||||
const float v = Q[2][ty][tx] / rho;
|
||||
|
||||
const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_*rho));
|
||||
const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_*rho));
|
||||
|
||||
shmem[ty][tx] = fminf(max_u, max_v);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
//One row of threads loop over all rows
|
||||
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
||||
if (ty == gc_y) {
|
||||
float min_val = shmem[ty][tx];
|
||||
const int max_y = min(h, ny_+gc_y - tj);
|
||||
for (int j=gc_y; j<max_y+gc_y; j++) {
|
||||
min_val = fminf(min_val, shmem[j][tx]);
|
||||
}
|
||||
shmem[ty][tx] = min_val;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
//One thread loops over first row to find global max
|
||||
if (tx == gc_x && ty == gc_y) {
|
||||
float min_val = shmem[ty][tx];
|
||||
const int max_x = min(w, nx_+gc_x - ti);
|
||||
for (int i=gc_x; i<max_x+gc_x; ++i) {
|
||||
min_val = fminf(min_val, shmem[ty][i]);
|
||||
}
|
||||
|
||||
const int idx = gridDim.x*blockIdx.y + blockIdx.x;
|
||||
output_[idx] = min_val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
inline __device__ float pressure(float4 Q, float gamma) {
|
||||
const float rho = Q.x;
|
||||
const float rho_u = Q.y;
|
||||
const float rho_v = Q.z;
|
||||
const float E = Q.w;
|
||||
|
||||
return (gamma-1.0f)*(E-0.5f*(rho_u*rho_u + rho_v*rho_v)/rho);
|
||||
}
|
||||
|
||||
|
||||
__device__ float4 F_func(const float4 Q, float P) {
|
||||
const float rho = Q.x;
|
||||
const float rho_u = Q.y;
|
||||
const float rho_v = Q.z;
|
||||
const float E = Q.w;
|
||||
|
||||
const float u = rho_u/rho;
|
||||
|
||||
float4 F;
|
||||
|
||||
F.x = rho_u;
|
||||
F.y = rho_u*u + P;
|
||||
F.z = rho_v*u;
|
||||
F.w = u*(E+P);
|
||||
|
||||
return F;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
|
||||
*/
|
||||
__device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) {
|
||||
const float h_l = Q_l.x;
|
||||
const float h_r = Q_r.x;
|
||||
|
||||
// Calculate velocities
|
||||
const float u_l = Q_l.y / h_l;
|
||||
const float u_r = Q_r.y / h_r;
|
||||
|
||||
// Calculate pressures
|
||||
const float P_l = pressure(Q_l, gamma);
|
||||
const float P_r = pressure(Q_r, gamma);
|
||||
|
||||
// Estimate the potential wave speeds
|
||||
const float c_l = sqrt(gamma*P_l/Q_l.x);
|
||||
const float c_r = sqrt(gamma*P_r/Q_r.x);
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
||||
|
||||
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
|
||||
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
|
||||
|
||||
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
||||
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
||||
|
||||
// Compute wave speed estimates
|
||||
const float S_l = u_l - c_l*q_l;
|
||||
const float S_r = u_r + c_r*q_r;
|
||||
|
||||
//Upwind selection
|
||||
if (S_l >= 0.0f) {
|
||||
return F_func(Q_l, P_l);
|
||||
}
|
||||
else if (S_r <= 0.0f) {
|
||||
return F_func(Q_r, P_r);
|
||||
}
|
||||
//Or estimate flux in the star region
|
||||
else {
|
||||
const float4 F_l = F_func(Q_l, P_l);
|
||||
const float4 F_r = F_func(Q_r, P_r);
|
||||
const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
|
||||
return flux;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Central upwind flux function
|
||||
*/
|
||||
__device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) {
|
||||
|
||||
const float Pp = pressure(Qp, gamma);
|
||||
const float4 Fp = F_func(Qp, Pp);
|
||||
const float up = Qp.y / Qp.x; // rho*u / rho
|
||||
const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho)
|
||||
|
||||
const float Pm = pressure(Qm, gamma);
|
||||
const float4 Fm = F_func(Qm, Pm);
|
||||
const float um = Qm.y / Qm.x; // rho*u / rho
|
||||
const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho)
|
||||
|
||||
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
|
||||
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
|
||||
|
||||
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
|
||||
}
|
||||
143
GPUSimulators/cuda/SWE2D_FORCE.cu
Normal file
143
GPUSimulators/cuda/SWE2D_FORCE.cu
Normal file
@@ -0,0 +1,143 @@
|
||||
/*
|
||||
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
||||
for the shallow water equations, with edge fluxes.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Compute fluxes along the x axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][j][i+1],
|
||||
Q[1][j][i+1],
|
||||
Q[2][j][i+1]);
|
||||
const float3 Qm = make_float3(Q[0][j][i],
|
||||
Q[1][j][i],
|
||||
Q[2][j][i]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Compute fluxes along the y axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][j+1][i],
|
||||
Q[2][j+1][i],
|
||||
Q[1][j+1][i]);
|
||||
const float3 Qm = make_float3(Q[0][j][i],
|
||||
Q[2][j][i],
|
||||
Q[1][j][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void FORCEKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along x, and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along y, and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
144
GPUSimulators/cuda/SWE2D_FORCE.cu.hip
Normal file
144
GPUSimulators/cuda/SWE2D_FORCE.cu.hip
Normal file
@@ -0,0 +1,144 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
||||
for the shallow water equations, with edge fluxes.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Compute fluxes along the x axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][j][i+1],
|
||||
Q[1][j][i+1],
|
||||
Q[2][j][i+1]);
|
||||
const float3 Qm = make_float3(Q[0][j][i],
|
||||
Q[1][j][i],
|
||||
Q[2][j][i]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Compute fluxes along the y axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][j+1][i],
|
||||
Q[2][j+1][i],
|
||||
Q[1][j+1][i]);
|
||||
const float3 Qm = make_float3(Q[0][j][i],
|
||||
Q[2][j][i],
|
||||
Q[1][j][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void FORCEKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along x, and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute flux along y, and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
161
GPUSimulators/cuda/SWE2D_HLL.cu
Normal file
161
GPUSimulators/cuda/SWE2D_HLL.cu
Normal file
@@ -0,0 +1,161 @@
|
||||
/*
|
||||
This GPU kernel implements the HLL flux
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Q_r = make_float3(Q[0][j][i+1],
|
||||
Q[1][j][i+1],
|
||||
Q[2][j][i+1]);
|
||||
const float3 Q_l = make_float3(Q[0][j][i],
|
||||
Q[1][j][i],
|
||||
Q[2][j][i]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = HLL_flux(Q_l, Q_r, g_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_) {
|
||||
//Compute fluxes along the y axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Q_r = make_float3(Q[0][j+1][i],
|
||||
Q[2][j+1][i],
|
||||
Q[1][j+1][i]);
|
||||
const float3 Q_l = make_float3(Q[0][j][i],
|
||||
Q[2][j][i],
|
||||
Q[1][j][i]);
|
||||
|
||||
// Computed flux
|
||||
//Note that we here swap hu and hv back to the original
|
||||
const float3 flux = HLL_flux(Q_l, Q_r, g_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
|
||||
__global__ void HLLKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Compute F flux
|
||||
computeFluxF(Q, F, g_);
|
||||
__syncthreads();
|
||||
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute G flux
|
||||
computeFluxG(Q, F, g_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
162
GPUSimulators/cuda/SWE2D_HLL.cu.hip
Normal file
162
GPUSimulators/cuda/SWE2D_HLL.cu.hip
Normal file
@@ -0,0 +1,162 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This GPU kernel implements the HLL flux
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Q_r = make_float3(Q[0][j][i+1],
|
||||
Q[1][j][i+1],
|
||||
Q[2][j][i+1]);
|
||||
const float3 Q_l = make_float3(Q[0][j][i],
|
||||
Q[1][j][i],
|
||||
Q[2][j][i]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = HLL_flux(Q_l, Q_r, g_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float g_) {
|
||||
//Compute fluxes along the y axis
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Q_r = make_float3(Q[0][j+1][i],
|
||||
Q[2][j+1][i],
|
||||
Q[1][j+1][i]);
|
||||
const float3 Q_l = make_float3(Q[0][j][i],
|
||||
Q[2][j][i],
|
||||
Q[1][j][i]);
|
||||
|
||||
// Computed flux
|
||||
//Note that we here swap hu and hv back to the original
|
||||
const float3 flux = HLL_flux(Q_l, Q_r, g_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
|
||||
__global__ void HLLKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Compute F flux
|
||||
computeFluxF(Q, F, g_);
|
||||
__syncthreads();
|
||||
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute G flux
|
||||
computeFluxG(Q, F, g_);
|
||||
__syncthreads();
|
||||
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
216
GPUSimulators/cuda/SWE2D_HLL2.cu
Normal file
216
GPUSimulators/cuda/SWE2D_HLL2.cu
Normal file
@@ -0,0 +1,216 @@
|
||||
/*
|
||||
This OpenCL kernel implements the second order HLL flux
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void HLL2Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+4][w+4];
|
||||
__shared__ float F[3][h+4][w+4];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
217
GPUSimulators/cuda/SWE2D_HLL2.cu.hip
Normal file
217
GPUSimulators/cuda/SWE2D_HLL2.cu.hip
Normal file
@@ -0,0 +1,217 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the second order HLL flux
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void HLL2Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+4][w+4];
|
||||
__shared__ float F[3][h+4][w+4];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
233
GPUSimulators/cuda/SWE2D_KP07.cu
Normal file
233
GPUSimulators/cuda/SWE2D_KP07.cu
Normal file
@@ -0,0 +1,233 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
|
||||
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
|
||||
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
|
||||
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
|
||||
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ void minmodSlopeX(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along x axis
|
||||
for (int p=0; p<3; ++p) {
|
||||
{
|
||||
const int j = threadIdx.y+2;
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+3; i+=BLOCK_WIDTH) {
|
||||
Qx[p][j-2][i-1] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Reconstructs a minmod slope for a whole block along the ordinate
|
||||
*/
|
||||
__device__ void minmodSlopeY(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along y axis
|
||||
for (int p=0; p<3; ++p) {
|
||||
const int i = threadIdx.x + 2;
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+3; j+=BLOCK_HEIGHT) {
|
||||
{
|
||||
Qy[p][j-1][i-2] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
__global__ void KP07Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_order_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float Qy[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
__shared__ float G[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
|
||||
//Reconstruct slopes along x and axis
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
minmodSlopeY(Q, Qy, theta_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF(Q, Qx, F, g_);
|
||||
computeFluxG(Q, Qy, G, g_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Sum fluxes and advance in time for all internal cells
|
||||
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
|
||||
const int i = tx + 2; //Skip local ghost cells, i.e., +2
|
||||
const int j = ty + 2;
|
||||
|
||||
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
|
||||
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
|
||||
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
|
||||
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
|
||||
|
||||
if (getOrder(step_order_) == 2 && getStep(step_order_) == 1) {
|
||||
//Write to main memory
|
||||
h_row[ti] = 0.5f*(h_row[ti] + Q[0][j][i]);
|
||||
hu_row[ti] = 0.5f*(hu_row[ti] + Q[1][j][i]);
|
||||
hv_row[ti] = 0.5f*(hv_row[ti] + Q[2][j][i]);
|
||||
}
|
||||
else {
|
||||
h_row[ti] = Q[0][j][i];
|
||||
hu_row[ti] = Q[1][j][i];
|
||||
hv_row[ti] = Q[2][j][i];
|
||||
}
|
||||
}
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
} //extern "C"
|
||||
234
GPUSimulators/cuda/SWE2D_KP07.cu.hip
Normal file
234
GPUSimulators/cuda/SWE2D_KP07.cu.hip
Normal file
@@ -0,0 +1,234 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
int j=ty;
|
||||
const int l = j + 2; //Skip ghost cells
|
||||
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
|
||||
const int k = i + 1;
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
|
||||
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
|
||||
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
|
||||
const float g_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
|
||||
const int l = j + 1;
|
||||
{
|
||||
int i=tx;
|
||||
const int k = i + 2; //Skip ghost cells
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
|
||||
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
|
||||
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ void minmodSlopeX(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along x axis
|
||||
for (int p=0; p<3; ++p) {
|
||||
{
|
||||
const int j = threadIdx.y+2;
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+3; i+=BLOCK_WIDTH) {
|
||||
Qx[p][j-2][i-1] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Reconstructs a minmod slope for a whole block along the ordinate
|
||||
*/
|
||||
__device__ void minmodSlopeY(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along y axis
|
||||
for (int p=0; p<3; ++p) {
|
||||
const int i = threadIdx.x + 2;
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+3; j+=BLOCK_HEIGHT) {
|
||||
{
|
||||
Qy[p][j-1][i-2] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
__global__ void KP07Kernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_order_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float Qx[3][h+2][w+2];
|
||||
__shared__ float Qy[3][h+2][w+2];
|
||||
__shared__ float F[3][h+1][w+1];
|
||||
__shared__ float G[3][h+1][w+1];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
|
||||
//Reconstruct slopes along x and axis
|
||||
minmodSlopeX(Q, Qx, theta_);
|
||||
minmodSlopeY(Q, Qy, theta_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF(Q, Qx, F, g_);
|
||||
computeFluxG(Q, Qy, G, g_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
//Sum fluxes and advance in time for all internal cells
|
||||
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
|
||||
const int i = tx + 2; //Skip local ghost cells, i.e., +2
|
||||
const int j = ty + 2;
|
||||
|
||||
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
|
||||
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
|
||||
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
|
||||
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
|
||||
|
||||
if (getOrder(step_order_) == 2 && getStep(step_order_) == 1) {
|
||||
//Write to main memory
|
||||
h_row[ti] = 0.5f*(h_row[ti] + Q[0][j][i]);
|
||||
hu_row[ti] = 0.5f*(hu_row[ti] + Q[1][j][i]);
|
||||
hv_row[ti] = 0.5f*(hv_row[ti] + Q[2][j][i]);
|
||||
}
|
||||
else {
|
||||
h_row[ti] = Q[0][j][i];
|
||||
hu_row[ti] = Q[1][j][i];
|
||||
hv_row[ti] = Q[2][j][i];
|
||||
}
|
||||
}
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
} //extern "C"
|
||||
216
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu
Normal file
216
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu
Normal file
@@ -0,0 +1,216 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
template <int w, int h, int gc_x, int gc_y>
|
||||
__device__
|
||||
void computeFluxF(float Q[3][h+2*gc_y][w+2*gc_x],
|
||||
float Qx[3][h+2*gc_y][w+2*gc_x],
|
||||
float F[3][h+2*gc_y][w+2*gc_x],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
for (int i=threadIdx.x+1; i<w+2*gc_x-2; i+=w) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int w, int h, int gc_x, int gc_y>
|
||||
__device__
|
||||
void computeFluxG(float Q[3][h+2*gc_y][w+2*gc_x],
|
||||
float Qy[3][h+2*gc_y][w+2*gc_x],
|
||||
float G[3][h+2*gc_y][w+2*gc_x],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<h+2*gc_y-2; j+=h) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
|
||||
|
||||
|
||||
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float Qx[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
if (step_ == 0) {
|
||||
//Along X
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Along Y
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
else {
|
||||
//Along Y
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Along X
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // extern "C"
|
||||
217
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu.hip
Normal file
217
GPUSimulators/cuda/SWE2D_KP07_dimsplit.cu.hip
Normal file
@@ -0,0 +1,217 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
template <int w, int h, int gc_x, int gc_y>
|
||||
__device__
|
||||
void computeFluxF(float Q[3][h+2*gc_y][w+2*gc_x],
|
||||
float Qx[3][h+2*gc_y][w+2*gc_x],
|
||||
float F[3][h+2*gc_y][w+2*gc_x],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
for (int i=threadIdx.x+1; i<w+2*gc_x-2; i+=w) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
|
||||
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
|
||||
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
|
||||
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] - 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] - 0.5f*Qx[2][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
|
||||
Q[1][j][i] + 0.5f*Qx[1][j][i],
|
||||
Q[2][j][i] + 0.5f*Qx[2][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int w, int h, int gc_x, int gc_y>
|
||||
__device__
|
||||
void computeFluxG(float Q[3][h+2*gc_y][w+2*gc_x],
|
||||
float Qy[3][h+2*gc_y][w+2*gc_x],
|
||||
float G[3][h+2*gc_y][w+2*gc_x],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<h+2*gc_y-2; j+=h) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
// Reconstruct point values of Q at the left and right hand side
|
||||
// of the cell for both the left (i) and right (i+1) cell
|
||||
//NOte that hu and hv are swapped ("transposing" the domain)!
|
||||
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
|
||||
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
|
||||
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
|
||||
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
|
||||
|
||||
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] - 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] - 0.5f*Qy[1][j][i]);
|
||||
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
|
||||
Q[2][j][i] + 0.5f*Qy[2][j][i],
|
||||
Q[1][j][i] + 0.5f*Qy[1][j][i]);
|
||||
|
||||
//Evolve half a timestep (predictor step)
|
||||
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
|
||||
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
|
||||
|
||||
// Compute flux based on prediction
|
||||
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
|
||||
|
||||
//Write to shared memory
|
||||
//Note that we here swap hu and hv back to the original
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
|
||||
*/
|
||||
extern "C" {
|
||||
|
||||
|
||||
|
||||
|
||||
__global__ void KP07DimsplitKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
float theta_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float Qx[vars][h+2*gc_y][w+2*gc_x];
|
||||
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
|
||||
|
||||
//Read into shared memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
if (step_ == 0) {
|
||||
//Along X
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Along Y
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
else {
|
||||
//Along Y
|
||||
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Along X
|
||||
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
|
||||
__syncthreads();
|
||||
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
} // extern "C"
|
||||
168
GPUSimulators/cuda/SWE2D_LxF.cu
Normal file
168
GPUSimulators/cuda/SWE2D_LxF.cu
Normal file
@@ -0,0 +1,168 @@
|
||||
/*
|
||||
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
||||
for the shallow water equations, with edge fluxes.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
template <int block_width, int block_height>
|
||||
__device__
|
||||
void computeFluxF(float Q[3][block_height+2][block_width+2],
|
||||
float F[3][block_height][block_width+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
const int j=ty;
|
||||
const int l = j + 1; //Skip ghost cells
|
||||
for (int i=tx; i<block_width+1; i+=block_width) {
|
||||
const int k = i;
|
||||
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][l][k+1],
|
||||
Q[1][l][k+1],
|
||||
Q[2][l][k+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[1][l][k],
|
||||
Q[2][l][k]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
template <int block_width, int block_height>
|
||||
__device__
|
||||
void computeFluxG(float Q[3][block_height+2][block_width+2],
|
||||
float G[3][block_height+1][block_width],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<block_height+1; j+=block_height) {
|
||||
const int l = j;
|
||||
{
|
||||
const int i=tx;
|
||||
const int k = i + 1; //Skip ghost cells
|
||||
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][l+1][k],
|
||||
Q[2][l+1][k],
|
||||
Q[1][l+1][k]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[2][l][k],
|
||||
Q[1][l][k]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__
|
||||
void LxFKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
__shared__ float Q[vars][h+2][w+2];
|
||||
__shared__ float F[vars][h ][w+1];
|
||||
__shared__ float G[vars][h+1][w ];
|
||||
|
||||
//Read from global memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
|
||||
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Evolve for all cells
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
const int i = tx + 1; //Skip local ghost cells, i.e., +1
|
||||
const int j = ty + 1;
|
||||
|
||||
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
169
GPUSimulators/cuda/SWE2D_LxF.cu.hip
Normal file
169
GPUSimulators/cuda/SWE2D_LxF.cu.hip
Normal file
@@ -0,0 +1,169 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the classical Lax-Friedrichs scheme
|
||||
for the shallow water equations, with edge fluxes.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
template <int block_width, int block_height>
|
||||
__device__
|
||||
void computeFluxF(float Q[3][block_height+2][block_width+2],
|
||||
float F[3][block_height][block_width+1],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
{
|
||||
const int j=ty;
|
||||
const int l = j + 1; //Skip ghost cells
|
||||
for (int i=tx; i<block_width+1; i+=block_width) {
|
||||
const int k = i;
|
||||
|
||||
// Q at interface from the right and left
|
||||
const float3 Qp = make_float3(Q[0][l][k+1],
|
||||
Q[1][l][k+1],
|
||||
Q[2][l][k+1]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[1][l][k],
|
||||
Q[2][l][k]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
template <int block_width, int block_height>
|
||||
__device__
|
||||
void computeFluxG(float Q[3][block_height+2][block_width+2],
|
||||
float G[3][block_height+1][block_width],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
|
||||
for (int j=ty; j<block_height+1; j+=block_height) {
|
||||
const int l = j;
|
||||
{
|
||||
const int i=tx;
|
||||
const int k = i + 1; //Skip ghost cells
|
||||
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Qp = make_float3(Q[0][l+1][k],
|
||||
Q[2][l+1][k],
|
||||
Q[1][l+1][k]);
|
||||
const float3 Qm = make_float3(Q[0][l][k],
|
||||
Q[2][l][k],
|
||||
Q[1][l][k]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__
|
||||
void LxFKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_,
|
||||
|
||||
//Output CFL
|
||||
float* cfl_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 1;
|
||||
const unsigned int gc_y = 1;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
__shared__ float Q[vars][h+2][w+2];
|
||||
__shared__ float F[vars][h ][w+1];
|
||||
__shared__ float G[vars][h+1][w ];
|
||||
|
||||
//Read from global memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
|
||||
//Compute fluxes along the x and y axis
|
||||
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
|
||||
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Evolve for all cells
|
||||
const int tx = threadIdx.x;
|
||||
const int ty = threadIdx.y;
|
||||
const int i = tx + 1; //Skip local ghost cells, i.e., +1
|
||||
const int j = ty + 1;
|
||||
|
||||
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
|
||||
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
|
||||
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
|
||||
__syncthreads();
|
||||
|
||||
//Write to main memory
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
|
||||
//Compute the CFL for this block
|
||||
if (cfl_ != NULL) {
|
||||
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
178
GPUSimulators/cuda/SWE2D_WAF.cu
Normal file
178
GPUSimulators/cuda/SWE2D_WAF.cu
Normal file
@@ -0,0 +1,178 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
|
||||
const float3 Ql1 = make_float3(Q[0][j][i ], Q[1][j][i ], Q[2][j][i ]);
|
||||
const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
|
||||
const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
|
||||
const float3 Ql1 = make_float3(Q[0][j ][i], Q[2][j ][i], Q[1][j ][i]);
|
||||
const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
|
||||
const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void WAFKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float F[3][h+4][w+4];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory Q from global memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
179
GPUSimulators/cuda/SWE2D_WAF.cu.hip
Normal file
179
GPUSimulators/cuda/SWE2D_WAF.cu.hip
Normal file
@@ -0,0 +1,179 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#include "common.h"
|
||||
#include "SWECommon.h"
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the x axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dx_, const float dt_) {
|
||||
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
|
||||
const float3 Ql1 = make_float3(Q[0][j][i ], Q[1][j][i ], Q[2][j][i ]);
|
||||
const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
|
||||
const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
|
||||
|
||||
// Computed flux
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
|
||||
F[0][j][i] = flux.x;
|
||||
F[1][j][i] = flux.y;
|
||||
F[2][j][i] = flux.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Computes the flux along the y axis for all faces
|
||||
*/
|
||||
__device__
|
||||
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
|
||||
const float g_, const float dy_, const float dt_) {
|
||||
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
|
||||
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
|
||||
// Q at interface from the right and left
|
||||
// Note that we swap hu and hv
|
||||
const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
|
||||
const float3 Ql1 = make_float3(Q[0][j ][i], Q[2][j ][i], Q[1][j ][i]);
|
||||
const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
|
||||
const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
|
||||
|
||||
// Computed flux
|
||||
// Note that we swap back
|
||||
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
|
||||
G[0][j][i] = flux.x;
|
||||
G[1][j][i] = flux.z;
|
||||
G[2][j][i] = flux.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
extern "C" {
|
||||
__global__ void WAFKernel(
|
||||
int nx_, int ny_,
|
||||
float dx_, float dy_, float dt_,
|
||||
float g_,
|
||||
|
||||
int step_,
|
||||
int boundary_conditions_,
|
||||
|
||||
//Input h^n
|
||||
float* h0_ptr_, int h0_pitch_,
|
||||
float* hu0_ptr_, int hu0_pitch_,
|
||||
float* hv0_ptr_, int hv0_pitch_,
|
||||
|
||||
//Output h^{n+1}
|
||||
float* h1_ptr_, int h1_pitch_,
|
||||
float* hu1_ptr_, int hu1_pitch_,
|
||||
float* hv1_ptr_, int hv1_pitch_) {
|
||||
|
||||
const unsigned int w = BLOCK_WIDTH;
|
||||
const unsigned int h = BLOCK_HEIGHT;
|
||||
const unsigned int gc_x = 2;
|
||||
const unsigned int gc_y = 2;
|
||||
const unsigned int vars = 3;
|
||||
|
||||
//Shared memory variables
|
||||
__shared__ float Q[3][h+4][w+4];
|
||||
__shared__ float F[3][h+4][w+4];
|
||||
|
||||
|
||||
|
||||
//Read into shared memory Q from global memory
|
||||
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
|
||||
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
|
||||
__syncthreads();
|
||||
|
||||
|
||||
|
||||
//Step 0 => evolve x first, then y
|
||||
if (step_ == 0) {
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
//Step 1 => evolve y first, then x
|
||||
else {
|
||||
//Compute fluxes along the y axis and evolve
|
||||
computeFluxG(Q, F, g_, dy_, dt_);
|
||||
__syncthreads();
|
||||
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
|
||||
__syncthreads();
|
||||
|
||||
//Compute fluxes along the x axis and evolve
|
||||
computeFluxF(Q, F, g_, dx_, dt_);
|
||||
__syncthreads();
|
||||
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Write to main memory for all internal cells
|
||||
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
|
||||
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
533
GPUSimulators/cuda/SWECommon.h
Normal file
533
GPUSimulators/cuda/SWECommon.h
Normal file
@@ -0,0 +1,533 @@
|
||||
/*
|
||||
These CUDA functions implement different types of numerical flux
|
||||
functions for the shallow water equations
|
||||
|
||||
Copyright (C) 2016, 2017, 2018 SINTEF Digital
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "limiters.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ float3 F_func(const float3 Q, const float g) {
|
||||
float3 F;
|
||||
|
||||
F.x = Q.y; //hu
|
||||
F.y = Q.y*Q.y / Q.x + 0.5f*g*Q.x*Q.x; //hu*hu/h + 0.5f*g*h*h;
|
||||
F.z = Q.y*Q.z / Q.x; //hu*hv/h;
|
||||
|
||||
return F;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Superbee flux limiter for WAF.
|
||||
* Related to superbee limiter so that WAF_superbee(r, c) = 1 - (1-|c|)*superbee(r)
|
||||
* @param r_ the ratio of upwind change (see Toro 2001, p. 203/204)
|
||||
* @param c_ the courant number for wave k, dt*S_k/dx
|
||||
*/
|
||||
__device__ float WAF_superbee(float r_, float c_) {
|
||||
// r <= 0.0
|
||||
if (r_ <= 0.0f) {
|
||||
return 1.0f;
|
||||
}
|
||||
// 0.0 <= r <= 1/2
|
||||
else if (r_ <= 0.5f) {
|
||||
return 1.0f - 2.0f*(1.0f - fabsf(c_))*r_;
|
||||
}
|
||||
// 1/2 <= r <= 1
|
||||
else if (r_ <= 1.0f) {
|
||||
return fabs(c_);
|
||||
}
|
||||
// 1 <= r <= 2
|
||||
else if (r_ <= 2.0f) {
|
||||
return 1.0f - (1.0f - fabsf(c_))*r_;
|
||||
}
|
||||
// r >= 2
|
||||
else {
|
||||
return 2.0f*fabsf(c_) - 1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ float WAF_albada(float r_, float c_) {
|
||||
if (r_ <= 0.0f) {
|
||||
return 1.0f;
|
||||
}
|
||||
else {
|
||||
return 1.0f - (1.0f - fabsf(c_)) * r_ * (1.0f + r_) / (1.0f + r_*r_);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ float WAF_minbee(float r_, float c_) {
|
||||
r_ = fmaxf(-1.0f, fminf(2.0f, r_));
|
||||
if (r_ <= 0.0f) {
|
||||
return 1.0f;
|
||||
}
|
||||
if (r_ >= 0.0f && r_ <= 1.0f) {
|
||||
return 1.0f - (1.0f - fabsf(c_)) * r_;
|
||||
}
|
||||
else {
|
||||
return fabsf(c_);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ float WAF_minmod(float r_, float c_) {
|
||||
return 1.0f - (1.0f - fabsf(c_)) * fmaxf(0.0f, fminf(1.0f, r_));
|
||||
}
|
||||
|
||||
__device__ float limiterToWAFLimiter(float r_, float c_) {
|
||||
return 1.0f - (1.0f - fabsf(c_))*r_;
|
||||
}
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
__device__ __inline__ float computeHStar(float h_l, float h_r, float u_l, float u_r, float c_l, float c_r, float g_) {
|
||||
|
||||
//This estimate for the h* gives rise to spurious oscillations.
|
||||
//return 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
||||
|
||||
const float h_tmp = 0.5f * (c_l + c_r) + 0.25f * (u_l - u_r);
|
||||
return h_tmp*h_tmp / g_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Weighted average flux (Toro 2001, p 200) for interface {i+1/2}
|
||||
* @param r_ The flux limiter parameter (see Toro 2001, p. 203)
|
||||
* @param Q_l2 Q_{i-1}
|
||||
* @param Q_l1 Q_{i}
|
||||
* @param Q_r1 Q_{i+1}
|
||||
* @param Q_r2 Q_{i+2}
|
||||
*/
|
||||
__device__ float3 WAF_1D_flux(const float3 Q_l2, const float3 Q_l1, const float3 Q_r1, const float3 Q_r2, const float g_, const float dx_, const float dt_) {
|
||||
const float h_l = Q_l1.x;
|
||||
const float h_r = Q_r1.x;
|
||||
|
||||
const float h_l2 = Q_l2.x;
|
||||
const float h_r2 = Q_r2.x;
|
||||
|
||||
// Calculate velocities
|
||||
const float u_l = Q_l1.y / h_l;
|
||||
const float u_r = Q_r1.y / h_r;
|
||||
|
||||
const float u_l2 = Q_l2.y / h_l2;
|
||||
const float u_r2 = Q_r2.y / h_r2;
|
||||
|
||||
const float v_l = Q_l1.z / h_l;
|
||||
const float v_r = Q_r1.z / h_r;
|
||||
|
||||
const float v_l2 = Q_l2.z / h_l2;
|
||||
const float v_r2 = Q_r2.z / h_r2;
|
||||
|
||||
// Estimate the potential wave speeds
|
||||
const float c_l = sqrt(g_*h_l);
|
||||
const float c_r = sqrt(g_*h_r);
|
||||
|
||||
const float c_l2 = sqrt(g_*h_l2);
|
||||
const float c_r2 = sqrt(g_*h_r2);
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
const float h_dag_l = computeHStar(h_l2, h_l, u_l2, u_l, c_l2, c_l, g_);
|
||||
const float h_dag = computeHStar( h_l, h_r, u_l, u_r, c_l, c_r, g_);
|
||||
const float h_dag_r = computeHStar( h_r, h_r2, u_r, u_r2, c_r, c_r2, g_);
|
||||
|
||||
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag ) ) / h_l;
|
||||
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag ) ) / h_r;
|
||||
|
||||
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
||||
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
||||
|
||||
// Compute wave speed estimates
|
||||
const float S_l = u_l - c_l*q_l;
|
||||
const float S_r = u_r + c_r*q_r;
|
||||
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
|
||||
|
||||
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1.0, S_star, v_l);
|
||||
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1.0, S_star, v_r);
|
||||
|
||||
// Estimate the fluxes in the four regions
|
||||
const float3 F_1 = F_func(Q_l1, g_);
|
||||
const float3 F_4 = F_func(Q_r1, g_);
|
||||
|
||||
const float3 F_2 = F_1 + S_l*(Q_star_l - Q_l1);
|
||||
const float3 F_3 = F_4 + S_r*(Q_star_r - Q_r1);
|
||||
//const float3 F_2 = F_func(Q_star_l, g_);
|
||||
//const float3 F_3 = F_func(Q_star_r, g_);
|
||||
|
||||
// Compute the courant numbers for the waves
|
||||
const float c_1 = S_l * dt_ / dx_;
|
||||
const float c_2 = S_star * dt_ / dx_;
|
||||
const float c_3 = S_r * dt_ / dx_;
|
||||
|
||||
// Compute the "upwind change" vectors for the i-3/2 and i+3/2 interfaces
|
||||
const float eps = 1.0e-6f;
|
||||
const float r_1 = desingularize( (c_1 > 0.0f) ? (h_dag_l - h_l2) : (h_dag_r - h_r), eps) / desingularize((h_dag - h_l), eps);
|
||||
const float r_2 = desingularize( (c_2 > 0.0f) ? (v_l - v_l2) : (v_r2 - v_r), eps ) / desingularize((v_r - v_l), eps);
|
||||
const float r_3 = desingularize( (c_3 > 0.0f) ? (h_l - h_dag_l) : (h_r2 - h_dag_r), eps ) / desingularize((h_r - h_dag), eps);
|
||||
|
||||
// Compute the limiter
|
||||
// We use h for the nonlinear waves, and v for the middle shear wave
|
||||
const float A_1 = copysign(1.0f, c_1) * limiterToWAFLimiter(generalized_minmod(r_1, 1.9f), c_1);
|
||||
const float A_2 = copysign(1.0f, c_2) * limiterToWAFLimiter(generalized_minmod(r_2, 1.9f), c_2);
|
||||
const float A_3 = copysign(1.0f, c_3) * limiterToWAFLimiter(generalized_minmod(r_3, 1.9f), c_3);
|
||||
|
||||
//Average the fluxes
|
||||
const float3 flux = 0.5f*( F_1 + F_4 )
|
||||
- 0.5f*( A_1 * (F_2 - F_1)
|
||||
+ A_2 * (F_3 - F_2)
|
||||
+ A_3 * (F_4 - F_3) );
|
||||
|
||||
return flux;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Central upwind flux function
|
||||
*/
|
||||
__device__ float3 CentralUpwindFlux(const float3 Qm, float3 Qp, const float g) {
|
||||
const float3 Fp = F_func(Qp, g);
|
||||
const float up = Qp.y / Qp.x; // hu / h
|
||||
const float cp = sqrt(g*Qp.x); // sqrt(g*h)
|
||||
|
||||
const float3 Fm = F_func(Qm, g);
|
||||
const float um = Qm.y / Qm.x; // hu / h
|
||||
const float cm = sqrt(g*Qm.x); // sqrt(g*h)
|
||||
|
||||
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
|
||||
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
|
||||
|
||||
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Godunovs centered scheme (Toro 2001, p 165)
|
||||
*/
|
||||
__device__ float3 GodC_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
|
||||
const float3 Q_godc = 0.5f*(Q_l + Q_r) + (dt_/dx_)*(F_l - F_r);
|
||||
|
||||
return F_func(Q_godc, g_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
|
||||
*/
|
||||
__device__ float3 HLL_flux(const float3 Q_l, const float3 Q_r, const float g_) {
|
||||
const float h_l = Q_l.x;
|
||||
const float h_r = Q_r.x;
|
||||
|
||||
// Calculate velocities
|
||||
const float u_l = Q_l.y / h_l;
|
||||
const float u_r = Q_r.y / h_r;
|
||||
|
||||
// Estimate the potential wave speeds
|
||||
const float c_l = sqrt(g_*h_l);
|
||||
const float c_r = sqrt(g_*h_r);
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
||||
|
||||
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
|
||||
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
|
||||
|
||||
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
||||
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
||||
|
||||
// Compute wave speed estimates
|
||||
const float S_l = u_l - c_l*q_l;
|
||||
const float S_r = u_r + c_r*q_r;
|
||||
|
||||
//Upwind selection
|
||||
if (S_l >= 0.0f) {
|
||||
return F_func(Q_l, g_);
|
||||
}
|
||||
else if (S_r <= 0.0f) {
|
||||
return F_func(Q_r, g_);
|
||||
}
|
||||
//Or estimate flux in the star region
|
||||
else {
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
const float3 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
|
||||
return flux;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 181)
|
||||
*/
|
||||
__device__ float3 HLLC_flux(const float3 Q_l, const float3 Q_r, const float g_) {
|
||||
const float h_l = Q_l.x;
|
||||
const float h_r = Q_r.x;
|
||||
|
||||
// Calculate velocities
|
||||
const float u_l = Q_l.y / h_l;
|
||||
const float u_r = Q_r.y / h_r;
|
||||
|
||||
// Estimate the potential wave speeds
|
||||
const float c_l = sqrt(g_*h_l);
|
||||
const float c_r = sqrt(g_*h_r);
|
||||
|
||||
// Compute h in the "star region", h^dagger
|
||||
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
|
||||
|
||||
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
|
||||
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
|
||||
|
||||
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
|
||||
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
|
||||
|
||||
// Compute wave speed estimates
|
||||
const float S_l = u_l - c_l*q_l;
|
||||
const float S_r = u_r + c_r*q_r;
|
||||
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
|
||||
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
|
||||
//Upwind selection
|
||||
if (S_l >= 0.0f) {
|
||||
return F_l;
|
||||
}
|
||||
else if (S_r <= 0.0f) {
|
||||
return F_r;
|
||||
}
|
||||
//Or estimate flux in the "left star" region
|
||||
else if (S_l <= 0.0f && 0.0f <=S_star) {
|
||||
const float v_l = Q_l.z / h_l;
|
||||
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1, S_star, v_l);
|
||||
const float3 flux = F_l + S_l*(Q_star_l - Q_l);
|
||||
return flux;
|
||||
}
|
||||
//Or estimate flux in the "righ star" region
|
||||
else if (S_star <= 0.0f && 0.0f <=S_r) {
|
||||
const float v_r = Q_r.z / h_r;
|
||||
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1, S_star, v_r);
|
||||
const float3 flux = F_r + S_r*(Q_star_r - Q_r);
|
||||
return flux;
|
||||
}
|
||||
else {
|
||||
return make_float3(-99999.9f, -99999.9f, -99999.9f); //Something wrong here
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Lax-Friedrichs flux (Toro 2001, p 163)
|
||||
*/
|
||||
__device__ float3 LxF_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
|
||||
return 0.5f*(F_l + F_r) + (dx_/(2.0f*dt_))*(Q_l - Q_r);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Lax-Friedrichs extended to 2D
|
||||
*/
|
||||
__device__ float3 LxF_2D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
|
||||
//Note numerical diffusion for 2D here (0.25)
|
||||
return 0.5f*(F_l + F_r) + (dx_/(4.0f*dt_))*(Q_l - Q_r);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Richtmeyer / Two-step Lax-Wendroff flux (Toro 2001, p 164)
|
||||
*/
|
||||
__device__ float3 LxW2_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
|
||||
const float3 F_l = F_func(Q_l, g_);
|
||||
const float3 F_r = F_func(Q_r, g_);
|
||||
|
||||
const float3 Q_lw2 = 0.5f*(Q_l + Q_r) + (dt_/(2.0f*dx_))*(F_l - F_r);
|
||||
|
||||
return F_func(Q_lw2, g_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* First Ordered Centered (Toro 2001, p.163)
|
||||
*/
|
||||
__device__ float3 FORCE_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
|
||||
const float3 F_lf = LxF_1D_flux(Q_l, Q_r, g_, dx_, dt_);
|
||||
const float3 F_lw2 = LxW2_1D_flux(Q_l, Q_r, g_, dx_, dt_);
|
||||
return 0.5f*(F_lf + F_lw2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float shmem[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_,
|
||||
const float dx_, const float dy_, const float g_,
|
||||
float* output_) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x + gc_x;
|
||||
const int ty = threadIdx.y + gc_y;
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + tx;
|
||||
const int tj = blockDim.y*blockIdx.y + ty;
|
||||
|
||||
//Only internal cells
|
||||
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
||||
const float h = Q[0][ty][tx];
|
||||
const float u = Q[1][ty][tx] / h;
|
||||
const float v = Q[2][ty][tx] / h;
|
||||
|
||||
const float max_u = dx_ / (fabsf(u) + sqrtf(g_*h));
|
||||
const float max_v = dy_ / (fabsf(v) + sqrtf(g_*h));
|
||||
|
||||
shmem[ty][tx] = fminf(max_u, max_v);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
//One row of threads loop over all rows
|
||||
if (ti < nx_+gc_x && tj < ny_+gc_y) {
|
||||
if (ty == gc_y) {
|
||||
float min_val = shmem[ty][tx];
|
||||
const int max_y = min(h, ny_+gc_y - tj);
|
||||
for (int j=gc_y; j<max_y+gc_y; j++) {
|
||||
min_val = fminf(min_val, shmem[j][tx]);
|
||||
}
|
||||
shmem[ty][tx] = min_val;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
//One thread loops over first row to find global max
|
||||
if (tx == gc_x && ty == gc_y) {
|
||||
float min_val = shmem[ty][tx];
|
||||
const int max_x = min(w, nx_+gc_x - ti);
|
||||
for (int i=gc_x; i<max_x+gc_x; ++i) {
|
||||
min_val = fminf(min_val, shmem[ty][i]);
|
||||
}
|
||||
|
||||
const int idx = gridDim.x*blockIdx.y + blockIdx.x;
|
||||
output_[idx] = min_val;
|
||||
}
|
||||
}
|
||||
|
||||
557
GPUSimulators/cuda/common.h
Normal file
557
GPUSimulators/cuda/common.h
Normal file
@@ -0,0 +1,557 @@
|
||||
/*
|
||||
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
|
||||
for the shallow water equations, described in
|
||||
A. Kurganov & Guergana Petrova
|
||||
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
|
||||
Scheme for the Saint-Venant System Communications in Mathematical
|
||||
Sciences, 5 (2007), 133-160.
|
||||
|
||||
Copyright (C) 2016 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
|
||||
/**
|
||||
* Float3 operators
|
||||
*/
|
||||
inline __device__ float3 operator*(const float a, const float3 b) {
|
||||
return make_float3(a*b.x, a*b.y, a*b.z);
|
||||
}
|
||||
|
||||
inline __device__ float3 operator/(const float3 a, const float b) {
|
||||
return make_float3(a.x/b, a.y/b, a.z/b);
|
||||
}
|
||||
|
||||
inline __device__ float3 operator-(const float3 a, const float3 b) {
|
||||
return make_float3(a.x-b.x, a.y-b.y, a.z-b.z);
|
||||
}
|
||||
|
||||
inline __device__ float3 operator+(const float3 a, const float3 b) {
|
||||
return make_float3(a.x+b.x, a.y+b.y, a.z+b.z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Float4 operators
|
||||
*/
|
||||
inline __device__ float4 operator*(const float a, const float4 b) {
|
||||
return make_float4(a*b.x, a*b.y, a*b.z, a*b.w);
|
||||
}
|
||||
|
||||
inline __device__ float4 operator/(const float4 a, const float b) {
|
||||
return make_float4(a.x/b, a.y/b, a.z/b, a.w/b);
|
||||
}
|
||||
|
||||
inline __device__ float4 operator-(const float4 a, const float4 b) {
|
||||
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
|
||||
}
|
||||
|
||||
inline __device__ float4 operator+(const float4 a, const float4 b) {
|
||||
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
inline __device__ __host__ float clamp(const float f, const float a, const float b) {
|
||||
return fmaxf(a, fminf(f, b));
|
||||
}
|
||||
|
||||
inline __device__ __host__ int clamp(const int f, const int a, const int b) {
|
||||
return (f < b) ? ( (f > a) ? f : a) : b;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ float desingularize(float x_, float eps_) {
|
||||
return copysign(1.0f, x_)*fmaxf(fabsf(x_), fminf(x_*x_/(2.0f*eps_)+0.5f*eps_, eps_));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns the step stored in the leftmost 16 bits
|
||||
* of the 32 bit step-order integer
|
||||
*/
|
||||
inline __device__ int getStep(int step_order_) {
|
||||
return step_order_ >> 16;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the order stored in the rightmost 16 bits
|
||||
* of the 32 bit step-order integer
|
||||
*/
|
||||
inline __device__ int getOrder(int step_order_) {
|
||||
return step_order_ & 0x0000FFFF;
|
||||
}
|
||||
|
||||
|
||||
enum BoundaryCondition {
|
||||
Dirichlet = 0,
|
||||
Neumann = 1,
|
||||
Periodic = 2,
|
||||
Reflective = 3
|
||||
};
|
||||
|
||||
inline __device__ BoundaryCondition getBCNorth(int bc_) {
|
||||
return static_cast<BoundaryCondition>((bc_ >> 24) & 0x0000000F);
|
||||
}
|
||||
|
||||
inline __device__ BoundaryCondition getBCSouth(int bc_) {
|
||||
return static_cast<BoundaryCondition>((bc_ >> 16) & 0x0000000F);
|
||||
}
|
||||
|
||||
inline __device__ BoundaryCondition getBCEast(int bc_) {
|
||||
return static_cast<BoundaryCondition>((bc_ >> 8) & 0x0000000F);
|
||||
}
|
||||
|
||||
inline __device__ BoundaryCondition getBCWest(int bc_) {
|
||||
return static_cast<BoundaryCondition>((bc_ >> 0) & 0x0000000F);
|
||||
}
|
||||
|
||||
|
||||
// West boundary
|
||||
template<int w, int h, int gc_x, int gc_y, int sign>
|
||||
__device__ void bcWestReflective(float Q[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int ti = blockDim.x*blockIdx.x + i;
|
||||
|
||||
if (gc_x >= 1 && ti == gc_x) {
|
||||
Q[j][i-1] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 2 && ti == gc_x + 1) {
|
||||
Q[j][i-3] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 3 && ti == gc_x + 2) {
|
||||
Q[j][i-5] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 4 && ti == gc_x + 3) {
|
||||
Q[j][i-7] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 5 && ti == gc_x + 4) {
|
||||
Q[j][i-9] = sign*Q[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// East boundary
|
||||
template<int w, int h, int gc_x, int gc_y, int sign>
|
||||
__device__ void bcEastReflective(float Q[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
const int i = threadIdx.x + gc_x;
|
||||
const int ti = blockDim.x*blockIdx.x + i;
|
||||
|
||||
if (gc_x >= 1 && ti == nx_ + gc_x - 1) {
|
||||
Q[j][i+1] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 2 && ti == nx_ + gc_x - 2) {
|
||||
Q[j][i+3] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 3 && ti == nx_ + gc_x - 3) {
|
||||
Q[j][i+5] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 4 && ti == nx_ + gc_x - 4) {
|
||||
Q[j][i+7] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_x >= 5 && ti == nx_ + gc_x - 5) {
|
||||
Q[j][i+9] = sign*Q[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// South boundary
|
||||
template<int w, int h, int gc_x, int gc_y, int sign>
|
||||
__device__ void bcSouthReflective(float Q[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const int tj = blockDim.y*blockIdx.y + j;
|
||||
|
||||
if (gc_y >= 1 && tj == gc_y) {
|
||||
Q[j-1][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 2 && tj == gc_y + 1) {
|
||||
Q[j-3][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 3 && tj == gc_y + 2) {
|
||||
Q[j-5][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 4 && tj == gc_y + 3) {
|
||||
Q[j-7][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 5 && tj == gc_y + 4) {
|
||||
Q[j-9][i] = sign*Q[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// North boundary
|
||||
template<int w, int h, int gc_x, int gc_y, int sign>
|
||||
__device__ void bcNorthReflective(float Q[h+2*gc_y][w+2*gc_x], const int nx_, const int ny_) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
const int j = threadIdx.y + gc_y;
|
||||
const int tj = blockDim.y*blockIdx.y + j;
|
||||
|
||||
if (gc_y >= 1 && tj == ny_ + gc_y - 1) {
|
||||
Q[j+1][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 2 && tj == ny_ + gc_y - 2) {
|
||||
Q[j+3][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 3 && tj == ny_ + gc_y - 3) {
|
||||
Q[j+5][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 4 && tj == ny_ + gc_y - 4) {
|
||||
Q[j+7][i] = sign*Q[j][i];
|
||||
}
|
||||
if (gc_y >= 5 && tj == ny_ + gc_y - 5) {
|
||||
Q[j+9][i] = sign*Q[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Alter the index l so that it gives periodic boundary conditions when reading
|
||||
*/
|
||||
template<int gc_x>
|
||||
inline __device__ int handlePeriodicBoundaryX(int k, int nx_, int boundary_conditions_) {
|
||||
const int gc_pad = gc_x;
|
||||
|
||||
//West boundary: add an offset to read from east of domain
|
||||
if (gc_x > 0) {
|
||||
if ((k < gc_pad)
|
||||
&& getBCWest(boundary_conditions_) == Periodic) {
|
||||
k += (nx_+2*gc_x - 2*gc_pad);
|
||||
}
|
||||
//East boundary: subtract an offset to read from west of domain
|
||||
else if ((k >= nx_+2*gc_x-gc_pad)
|
||||
&& getBCEast(boundary_conditions_) == Periodic) {
|
||||
k -= (nx_+2*gc_x - 2*gc_pad);
|
||||
}
|
||||
}
|
||||
|
||||
return k;
|
||||
}
|
||||
|
||||
/**
|
||||
* Alter the index l so that it gives periodic boundary conditions when reading
|
||||
*/
|
||||
template<int gc_y>
|
||||
inline __device__ int handlePeriodicBoundaryY(int l, int ny_, int boundary_conditions_) {
|
||||
const int gc_pad = gc_y;
|
||||
|
||||
//South boundary: add an offset to read from north of domain
|
||||
if (gc_y > 0) {
|
||||
if ((l < gc_pad)
|
||||
&& getBCSouth(boundary_conditions_) == Periodic) {
|
||||
l += (ny_+2*gc_y - 2*gc_pad);
|
||||
}
|
||||
//North boundary: subtract an offset to read from south of domain
|
||||
else if ((l >= ny_+2*gc_y-gc_pad)
|
||||
&& getBCNorth(boundary_conditions_) == Periodic) {
|
||||
l -= (ny_+2*gc_y - 2*gc_pad);
|
||||
}
|
||||
}
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
|
||||
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
|
||||
inline __device__
|
||||
void handleReflectiveBoundary(
|
||||
float Q[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_,
|
||||
const int boundary_conditions_) {
|
||||
|
||||
//Handle reflective boundary conditions
|
||||
if (getBCNorth(boundary_conditions_) == Reflective) {
|
||||
bcNorthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
|
||||
__syncthreads();
|
||||
}
|
||||
if (getBCSouth(boundary_conditions_) == Reflective) {
|
||||
bcSouthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
|
||||
__syncthreads();
|
||||
}
|
||||
if (getBCEast(boundary_conditions_) == Reflective) {
|
||||
bcEastReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
|
||||
__syncthreads();
|
||||
}
|
||||
if (getBCWest(boundary_conditions_) == Reflective) {
|
||||
bcWestReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads a block of data with ghost cells
|
||||
*/
|
||||
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
|
||||
inline __device__ void readBlock(float* ptr_, int pitch_,
|
||||
float Q[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_,
|
||||
const int boundary_conditions_,
|
||||
int x0, int y0,
|
||||
int x1, int y1) {
|
||||
//Index of block within domain
|
||||
const int bx = blockDim.x * blockIdx.x;
|
||||
const int by = blockDim.y * blockIdx.y;
|
||||
|
||||
//Read into shared memory
|
||||
//Loop over all variables
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
//Handle periodic boundary conditions here
|
||||
int l = handlePeriodicBoundaryY<gc_y>(by + j + y0, ny_, boundary_conditions_);
|
||||
l = min(l, min(ny_+2*gc_y-1, y1+2*gc_y-1));
|
||||
float* row = (float*) ((char*) ptr_ + pitch_*l);
|
||||
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
//Handle periodic boundary conditions here
|
||||
int k = handlePeriodicBoundaryX<gc_x>(bx + i + x0, nx_, boundary_conditions_);
|
||||
k = min(k, min(nx_+2*gc_x-1, x1+2*gc_x-1));
|
||||
|
||||
//Read from global memory
|
||||
Q[j][i] = row[k];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
handleReflectiveBoundary<w, h, gc_x, gc_y, sign_x, sign_y>(Q, nx_, ny_, boundary_conditions_);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Writes a block of data to global memory for the shallow water equations.
|
||||
*/
|
||||
template<int w, int h, int gc_x, int gc_y>
|
||||
inline __device__ void writeBlock(float* ptr_, int pitch_,
|
||||
float shmem[h+2*gc_y][w+2*gc_x],
|
||||
const int nx_, const int ny_,
|
||||
int rk_step_, int rk_order_,
|
||||
int x0, int y0,
|
||||
int x1, int y1) {
|
||||
|
||||
//Index of cell within domain
|
||||
const int ti = blockDim.x*blockIdx.x + threadIdx.x + gc_x + x0;
|
||||
const int tj = blockDim.y*blockIdx.y + threadIdx.y + gc_y + y0;
|
||||
|
||||
//In case we are writing only to a subarea given by (x0, y0) x (x1, y1)
|
||||
const int max_ti = min(nx_+gc_x, x1+gc_x);
|
||||
const int max_tj = min(ny_+gc_y, y1+gc_y);
|
||||
|
||||
//Only write internal cells
|
||||
if ((x0+gc_x <= ti) && (ti < max_ti) && (y0+gc_y <= tj) && (tj < max_tj)) {
|
||||
//Index of thread within block
|
||||
const int tx = threadIdx.x + gc_x;
|
||||
const int ty = threadIdx.y + gc_y;
|
||||
|
||||
float* const row = (float*) ((char*) ptr_ + pitch_*tj);
|
||||
|
||||
//Handle runge-kutta timestepping here
|
||||
row[ti] = shmem[ty][tx];
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* SSPRK1 (forward Euler)
|
||||
* u^1 = u^n + dt*f(u^n)
|
||||
*/
|
||||
if (rk_order_ == 1) {
|
||||
row[ti] = shmem[ty][tx];
|
||||
}
|
||||
/**
|
||||
* SSPRK2
|
||||
* u^1 = u^n + dt*f(u^n)
|
||||
* u^n+1 = 1/2*u^n + 1/2*(u^1 + dt*f(u^1))
|
||||
*/
|
||||
else if (rk_order_ == 2) {
|
||||
if (rk_step_ == 0) {
|
||||
row[ti] = shmem[ty][tx];
|
||||
}
|
||||
else if (rk_step_ == 1) {
|
||||
row[ti] = 0.5f*row[ti] + 0.5f*shmem[ty][tx];
|
||||
}
|
||||
}
|
||||
/**
|
||||
* SSPRK3
|
||||
* u^1 = u^n + dt*f(u^n)
|
||||
* u^2 = 3/4 * u^n + 1/4 * (u^1 + dt*f(u^1))
|
||||
* u^n+1 = 1/3 * u^n + 2/3 * (u^2 + dt*f(u^2))
|
||||
* FIXME: This is not correct now, need a temporary to hold intermediate step u^2
|
||||
*/
|
||||
else if (rk_order_ == 3) {
|
||||
if (rk_step_ == 0) {
|
||||
row[ti] = shmem[ty][tx];
|
||||
}
|
||||
else if (rk_step_ == 1) {
|
||||
row[ti] = 0.75f*row[ti] + 0.25f*shmem[ty][tx];
|
||||
}
|
||||
else if (rk_step_ == 2) {
|
||||
const float t = 1.0f / 3.0f; //Not representable in base 2
|
||||
row[ti] = t*row[ti] + (1.0f-t)*shmem[ty][tx];
|
||||
}
|
||||
}
|
||||
|
||||
// DEBUG
|
||||
//row[ti] = 99.0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void evolveF(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float F[vars][h+2*gc_y][w+2*gc_x],
|
||||
const float dx_, const float dt_) {
|
||||
for (int var=0; var < vars; ++var) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
for (int i=threadIdx.x+gc_x; i<w+gc_x; i+=w) {
|
||||
Q[var][j][i] = Q[var][j][i] + (F[var][j][i-1] - F[var][j][i]) * dt_ / dx_;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Evolves the solution in time along the y axis (dimensional splitting)
|
||||
*/
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void evolveG(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float G[vars][h+2*gc_y][w+2*gc_x],
|
||||
const float dy_, const float dt_) {
|
||||
for (int var=0; var < vars; ++var) {
|
||||
for (int j=threadIdx.y+gc_y; j<h+gc_y; j+=h) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
Q[var][j][i] = Q[var][j][i] + (G[var][j-1][i] - G[var][j][i]) * dt_ / dy_;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Helper function for debugging etc.
|
||||
*/
|
||||
template<int shmem_width, int shmem_height, int vars>
|
||||
__device__ void memset(float Q[vars][shmem_height][shmem_width], float value) {
|
||||
for (int k=0; k<vars; ++k) {
|
||||
for (int j=threadIdx.y; j<shmem_height; ++j) {
|
||||
for (int i=threadIdx.x; i<shmem_width; ++i) {
|
||||
Q[k][j][i] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <unsigned int threads>
|
||||
__device__ void reduce_max(float* data, unsigned int n) {
|
||||
__shared__ float sdata[threads];
|
||||
unsigned int tid = threadIdx.x;
|
||||
|
||||
//Reduce to "threads" elements
|
||||
sdata[tid] = FLT_MIN;
|
||||
for (unsigned int i=tid; i<n; i += threads) {
|
||||
sdata[tid] = max(sdata[tid], dt_ctx.L[i]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
//Now, reduce all elements into a single element
|
||||
if (threads >= 512) {
|
||||
if (tid < 256) {
|
||||
sdata[tid] = max(sdata[tid], sdata[tid + 256]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (threads >= 256) {
|
||||
if (tid < 128) {
|
||||
sdata[tid] = max(sdata[tid], sdata[tid + 128]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (threads >= 128) {
|
||||
if (tid < 64) {
|
||||
sdata[tid] = max(sdata[tid], sdata[tid + 64]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (tid < 32) {
|
||||
volatile float* sdata_volatile = sdata;
|
||||
if (threads >= 64) {
|
||||
sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 32]);
|
||||
}
|
||||
if (tid < 16) {
|
||||
if (threads >= 32) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 16]);
|
||||
if (threads >= 16) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 8]);
|
||||
if (threads >= 8) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 4]);
|
||||
if (threads >= 4) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 2]);
|
||||
if (threads >= 2) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 1]);
|
||||
}
|
||||
|
||||
if (tid == 0) {
|
||||
return sdata_volatile[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
118
GPUSimulators/cuda/limiters.h
Normal file
118
GPUSimulators/cuda/limiters.h
Normal file
@@ -0,0 +1,118 @@
|
||||
/*
|
||||
This file implements different flux and slope limiters
|
||||
|
||||
Copyright (C) 2016, 2017, 2018 SINTEF ICT
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Reconstructs a slope using the generalized minmod limiter based on three
|
||||
* consecutive values
|
||||
*/
|
||||
__device__ __inline__ float minmodSlope(float left, float center, float right, float theta) {
|
||||
const float backward = (center - left) * theta;
|
||||
const float central = (right - left) * 0.5f;
|
||||
const float forward = (right - center) * theta;
|
||||
|
||||
return 0.25f
|
||||
*copysign(1.0f, backward)
|
||||
*(copysign(1.0f, backward) + copysign(1.0f, central))
|
||||
*(copysign(1.0f, central) + copysign(1.0f, forward))
|
||||
*min( min(fabs(backward), fabs(central)), fabs(forward) );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Reconstructs a minmod slope for a whole block along the abscissa
|
||||
*/
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void minmodSlopeX(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float Qx[vars][h+2*gc_y][w+2*gc_x],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along x axis
|
||||
for (int p=0; p<vars; ++p) {
|
||||
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
|
||||
for (int i=threadIdx.x+1; i<w+2*gc_x-1; i+=w) {
|
||||
Qx[p][j][i] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Reconstructs a minmod slope for a whole block along the ordinate
|
||||
*/
|
||||
template<int w, int h, int gc_x, int gc_y, int vars>
|
||||
__device__ void minmodSlopeY(float Q[vars][h+2*gc_y][w+2*gc_x],
|
||||
float Qy[vars][h+2*gc_y][w+2*gc_x],
|
||||
const float theta_) {
|
||||
//Reconstruct slopes along y axis
|
||||
for (int p=0; p<vars; ++p) {
|
||||
for (int j=threadIdx.y+1; j<h+2*gc_y-1; j+=h) {
|
||||
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
|
||||
Qy[p][j][i] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
__device__ float monotonized_central(float r_) {
|
||||
return fmaxf(0.0f, fminf(2.0f, fminf(2.0f*r_, 0.5f*(1.0f+r_))));
|
||||
}
|
||||
|
||||
__device__ float osher(float r_, float beta_) {
|
||||
return fmaxf(0.0f, fminf(beta_, r_));
|
||||
}
|
||||
|
||||
__device__ float sweby(float r_, float beta_) {
|
||||
return fmaxf(0.0f, fmaxf(fminf(r_, beta_), fminf(beta_*r_, 1.0f)));
|
||||
}
|
||||
|
||||
__device__ float minmod(float r_) {
|
||||
return fmaxf(0.0f, fminf(1.0f, r_));
|
||||
}
|
||||
|
||||
__device__ float generalized_minmod(float r_, float theta_) {
|
||||
return fmaxf(0.0f, fminf(theta_*r_, fminf( (1.0f + r_) / 2.0f, theta_)));
|
||||
}
|
||||
|
||||
__device__ float superbee(float r_) {
|
||||
return fmaxf(0.0f, fmaxf(fminf(2.0f*r_, 1.0f), fminf(r_, 2.0f)));
|
||||
}
|
||||
|
||||
__device__ float vanAlbada1(float r_) {
|
||||
return (r_*r_ + r_) / (r_*r_ + 1.0f);
|
||||
}
|
||||
|
||||
__device__ float vanAlbada2(float r_) {
|
||||
return 2.0f*r_ / (r_*r_* + 1.0f);
|
||||
}
|
||||
|
||||
__device__ float vanLeer(float r_) {
|
||||
return (r_ + fabsf(r_)) / (1.0f + fabsf(r_));
|
||||
}
|
||||
Reference in New Issue
Block a user