Recover deleted files from commit e2b1281

This commit is contained in:
Hicham Agueny 2024-02-27 15:49:56 +01:00
parent 80ffaf9b44
commit 1d7c50241f
43 changed files with 10711 additions and 0 deletions

304
GPUSimulators/Autotuner.py Normal file
View File

@ -0,0 +1,304 @@
# -*- coding: utf-8 -*-
"""
This python module implements the different helper functions and
classes
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import gc
import numpy as np
import logging
from socket import gethostname
#import pycuda.driver as cuda
from hip import hip,hiprtc
from GPUSimulators import Common, Simulator, CudaContext
class Autotuner:
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
nx=2048, ny=2048,
block_widths=range(8, 32, 1),
block_heights=range(8, 32, 1)):
logger = logging.getLogger(__name__)
self.filename = "autotuning_data_" + gethostname() + ".npz"
self.nx = nx
self.ny = ny
self.block_widths = block_widths
self.block_heights = block_heights
self.performance = {}
def benchmark(self, simulator, force=False):
logger = logging.getLogger(__name__)
#Run through simulators and benchmark
key = str(simulator.__name__)
logger.info("Benchmarking %s to %s", key, self.filename)
#If this simulator has been benchmarked already, skip it
if (force==False and os.path.isfile(self.filename)):
with np.load(self.filename) as data:
if key in data["simulators"]:
logger.info("%s already benchmarked - skipping", key)
return
# Set arguments to send to the simulators during construction
context = CudaContext.CudaContext(autotuning=False)
g = 9.81
h0, hu0, hv0, dx, dy, dt = Autotuner.gen_test_data(nx=self.nx, ny=self.ny, g=g)
arguments = {
'context': context,
'h0': h0, 'hu0': hu0, 'hv0': hv0,
'nx': self.nx, 'ny': self.ny,
'dx': dx, 'dy': dy, 'dt': 0.9*dt,
'g': g
}
# Load existing data into memory
benchmark_data = {
"simulators": [],
}
if (os.path.isfile(self.filename)):
with np.load(self.filename) as data:
for k, v in data.items():
benchmark_data[k] = v
# Run benchmark
benchmark_data[key + "_megacells"] = Autotuner.benchmark_single_simulator(simulator, arguments, self.block_widths, self.block_heights)
benchmark_data[key + "_block_widths"] = self.block_widths
benchmark_data[key + "_block_heights"] = self.block_heights
benchmark_data[key + "_arguments"] = str(arguments)
existing_sims = benchmark_data["simulators"]
if (isinstance(existing_sims, np.ndarray)):
existing_sims = existing_sims.tolist()
if (key not in existing_sims):
benchmark_data["simulators"] = existing_sims + [key]
# Save to file
np.savez_compressed(self.filename, **benchmark_data)
"""
Function which reads a numpy file with autotuning data
and reports the maximum performance and block size
"""
def get_peak_performance(self, simulator):
logger = logging.getLogger(__name__)
assert issubclass(simulator, Simulator.BaseSimulator)
key = simulator.__name__
if (key in self.performance):
return self.performance[key]
else:
#Run simulation if required
if (not os.path.isfile(self.filename)):
logger.debug("Could not get autotuned peak performance for %s: benchmarking", key)
self.benchmark(simulator)
with np.load(self.filename) as data:
if key not in data['simulators']:
logger.debug("Could not get autotuned peak performance for %s: benchmarking", key)
data.close()
self.benchmark(simulator)
data = np.load(self.filename)
def find_max_index(megacells):
max_index = np.nanargmax(megacells)
return np.unravel_index(max_index, megacells.shape)
megacells = data[key + '_megacells']
block_widths = data[key + '_block_widths']
block_heights = data[key + '_block_heights']
j, i = find_max_index(megacells)
self.performance[key] = { "block_width": block_widths[i],
"block_height": block_heights[j],
"megacells": megacells[j, i] }
logger.debug("Returning %s as peak performance parameters", self.performance[key])
return self.performance[key]
#This should never happen
raise "Something wrong: Could not get autotuning data!"
return None
"""
Runs a set of benchmarks for a single simulator
"""
def benchmark_single_simulator(simulator, arguments, block_widths, block_heights):
logger = logging.getLogger(__name__)
megacells = np.empty((len(block_heights), len(block_widths)))
megacells.fill(np.nan)
logger.debug("Running %d benchmarks with %s", len(block_heights)*len(block_widths), simulator.__name__)
sim_arguments = arguments.copy()
with Common.Timer(simulator.__name__) as t:
for j, block_height in enumerate(block_heights):
sim_arguments.update({'block_height': block_height})
for i, block_width in enumerate(block_widths):
sim_arguments.update({'block_width': block_width})
megacells[j, i] = Autotuner.run_benchmark(simulator, sim_arguments)
logger.debug("Completed %s in %f seconds", simulator.__name__, t.secs)
return megacells
"""
Runs a benchmark, and returns the number of megacells achieved
"""
def run_benchmark(simulator, arguments, timesteps=10, warmup_timesteps=2):
logger = logging.getLogger(__name__)
#Initialize simulator
try:
sim = simulator(**arguments)
except:
#An exception raised - not possible to continue
logger.debug("Failed creating %s with arguments %s", simulator.__name__, str(arguments))
return np.nan
#Create timer events
#start = cuda.Event()
#end = cuda.Event()
stream = hip_check(hip.hipStreamCreate())
start = hip_check(hip.hipEventCreate())
end = hip_check(hip.hipEventCreate())
#Warmup
for i in range(warmup_timesteps):
sim.stepEuler(sim.dt)
#Run simulation with timer
#start.record(sim.stream)
#start recording
hip_check(hip.hipEventRecord(start, stream))
for i in range(timesteps):
sim.stepEuler(sim.dt)
#end.record(sim.stream)
#stop recording and synchronize
hip_check(hip.hipEventRecord(end, stream))
#Synchronize end event
#end.synchronize()
hip_check(hip.hipEventSynchronize(end))
#Compute megacells
#gpu_elapsed = end.time_since(start)*1.0e-3
gpu_elapsed = hip_check(hip.hipEventElapsedTime(start, end))
megacells = (sim.nx*sim.ny*timesteps / (1000*1000)) / gpu_elapsed
#Sanity check solution
h, hu, hv = sim.download()
sane = True
sane = sane and Autotuner.sanity_check(h, 0.3, 0.7)
sane = sane and Autotuner.sanity_check(hu, -0.2, 0.2)
sane = sane and Autotuner.sanity_check(hv, -0.2, 0.2)
if (sane):
logger.debug("%s [%d x %d] succeeded: %f megacells, gpu elapsed %f", simulator.__name__, arguments["block_width"], arguments["block_height"], megacells, gpu_elapsed)
return megacells
else:
logger.debug("%s [%d x %d] failed: gpu elapsed %f", simulator.__name__, arguments["block_width"], arguments["block_height"], gpu_elapsed)
return np.nan
"""
Generates test dataset
"""
def gen_test_data(nx, ny, g):
width = 100.0
height = 100.0
dx = width / float(nx)
dy = height / float(ny)
x_center = dx*nx/2.0
y_center = dy*ny/2.0
#Create a gaussian "dam break" that will not form shocks
size = width / 5.0
dt = 10**10
h = np.zeros((ny, nx), dtype=np.float32);
hu = np.zeros((ny, nx), dtype=np.float32);
hv = np.zeros((ny, nx), dtype=np.float32);
extent = 1.0/np.sqrt(2.0)
x = (dx*(np.arange(0, nx, dtype=np.float32)+0.5) - x_center) / size
y = (dy*(np.arange(0, ny, dtype=np.float32)+0.5) - y_center) / size
xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
r = np.minimum(1.0, np.sqrt(xv**2 + yv**2))
xv = None
yv = None
gc.collect()
#Generate highres
cos = np.cos(np.pi*r)
h = 0.5 + 0.1*0.5*(1.0 + cos)
hu = 0.1*0.5*(1.0 + cos)
hv = hu.copy()
scale = 0.7
max_h_estimate = 0.6
max_u_estimate = 0.1*np.sqrt(2.0)
dx = width/nx
dy = height/ny
dt = scale * min(dx, dy) / (max_u_estimate + np.sqrt(g*max_h_estimate))
return h, hu, hv, dx, dy, dt
"""
Checks that a variable is "sane"
"""
def sanity_check(variable, bound_min, bound_max):
maxval = np.amax(variable)
minval = np.amin(variable)
if (np.isnan(maxval)
or np.isnan(minval)
or maxval > bound_max
or minval < bound_min):
return False
else:
return True

879
GPUSimulators/Common.py Normal file
View File

@ -0,0 +1,879 @@
# -*- coding: utf-8 -*-
"""
This python module implements the different helper functions and
classes
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
import time
import signal
import subprocess
import tempfile
import re
import io
import hashlib
import logging
import gc
import netCDF4
import json
#import pycuda.compiler as cuda_compiler
#import pycuda.gpuarray
#import pycuda.driver as cuda
#from pycuda.tools import PageLockedMemoryPool
from hip import hip, hiprtc
from hip import hipblas
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def safeCall(cmd):
logger = logging.getLogger(__name__)
try:
#git rev-parse HEAD
current_dir = os.path.dirname(os.path.realpath(__file__))
params = dict()
params['stderr'] = subprocess.STDOUT
params['cwd'] = current_dir
params['universal_newlines'] = True #text=True in more recent python
params['shell'] = False
if os.name == 'nt':
params['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP
stdout = subprocess.check_output(cmd, **params)
except subprocess.CalledProcessError as e:
output = e.output
logger.error("Git failed, \nReturn code: " + str(e.returncode) + "\nOutput: " + output)
raise e
return stdout
def getGitHash():
return safeCall(["git", "rev-parse", "HEAD"])
def getGitStatus():
return safeCall(["git", "status", "--porcelain", "-uno"])
def toJson(in_dict, compressed=True):
"""
Creates JSON string from a dictionary
"""
logger = logging.getLogger(__name__)
out_dict = in_dict.copy()
for key in out_dict:
if isinstance(out_dict[key], np.ndarray):
out_dict[key] = out_dict[key].tolist()
else:
try:
json.dumps(out_dict[key])
except:
value = str(out_dict[key])
logger.warning("JSON: Converting {:s} to string ({:s})".format(key, value))
out_dict[key] = value
return json.dumps(out_dict)
def runSimulation(simulator, simulator_args, outfile, save_times, save_var_names=[], dt=None):
"""
Runs a simulation, and stores output in netcdf file. Stores the times given in
save_times, and saves all of the variables in list save_var_names. Elements in
save_var_names can be set to None if you do not want to save them
"""
profiling_data_sim_runner = { 'start': {}, 'end': {} }
profiling_data_sim_runner["start"]["t_sim_init"] = 0
profiling_data_sim_runner["end"]["t_sim_init"] = 0
profiling_data_sim_runner["start"]["t_nc_write"] = 0
profiling_data_sim_runner["end"]["t_nc_write"] = 0
profiling_data_sim_runner["start"]["t_full_step"] = 0
profiling_data_sim_runner["end"]["t_full_step"] = 0
profiling_data_sim_runner["start"]["t_sim_init"] = time.time()
logger = logging.getLogger(__name__)
assert len(save_times) > 0, "Need to specify which times to save"
with Timer("construct") as t:
sim = simulator(**simulator_args)
logger.info("Constructed in " + str(t.secs) + " seconds")
#Create netcdf file and simulate
with DataDumper(outfile, mode='w', clobber=False) as outdata:
#Create attributes (metadata)
outdata.ncfile.created = time.ctime(time.time())
outdata.ncfile.git_hash = getGitHash()
outdata.ncfile.git_status = getGitStatus()
outdata.ncfile.simulator = str(simulator)
# do not write fields to attributes (they are to large)
simulator_args_for_ncfile = simulator_args.copy()
del simulator_args_for_ncfile["rho"]
del simulator_args_for_ncfile["rho_u"]
del simulator_args_for_ncfile["rho_v"]
del simulator_args_for_ncfile["E"]
outdata.ncfile.sim_args = toJson(simulator_args_for_ncfile)
#Create dimensions
outdata.ncfile.createDimension('time', len(save_times))
outdata.ncfile.createDimension('x', simulator_args['nx'])
outdata.ncfile.createDimension('y', simulator_args['ny'])
#Create variables for dimensions
ncvars = {}
ncvars['time'] = outdata.ncfile.createVariable('time', np.dtype('float32').char, 'time')
ncvars['x'] = outdata.ncfile.createVariable( 'x', np.dtype('float32').char, 'x')
ncvars['y'] = outdata.ncfile.createVariable( 'y', np.dtype('float32').char, 'y')
#Fill variables with proper values
ncvars['time'][:] = save_times
extent = sim.getExtent()
ncvars['x'][:] = np.linspace(extent[0], extent[1], simulator_args['nx'])
ncvars['y'][:] = np.linspace(extent[2], extent[3], simulator_args['ny'])
#Choose which variables to download (prune None from list, but keep the index)
download_vars = []
for i, var_name in enumerate(save_var_names):
if var_name is not None:
download_vars += [i]
save_var_names = list(save_var_names[i] for i in download_vars)
#Create variables
for var_name in save_var_names:
ncvars[var_name] = outdata.ncfile.createVariable(var_name, np.dtype('float32').char, ('time', 'y', 'x'), zlib=True, least_significant_digit=3)
#Create step sizes between each save
t_steps = np.empty_like(save_times)
t_steps[0] = save_times[0]
t_steps[1:] = save_times[1:] - save_times[0:-1]
profiling_data_sim_runner["end"]["t_sim_init"] = time.time()
#Start simulation loop
progress_printer = ProgressPrinter(save_times[-1], print_every=10)
for k in range(len(save_times)):
#Get target time and step size there
t_step = t_steps[k]
t_end = save_times[k]
#Sanity check simulator
try:
sim.check()
except AssertionError as e:
logger.error("Error after {:d} steps (t={:f}: {:s}".format(sim.simSteps(), sim.simTime(), str(e)))
return outdata.filename
profiling_data_sim_runner["start"]["t_full_step"] += time.time()
#Simulate
if (t_step > 0.0):
sim.simulate(t_step, dt)
profiling_data_sim_runner["end"]["t_full_step"] += time.time()
profiling_data_sim_runner["start"]["t_nc_write"] += time.time()
#Download
save_vars = sim.download(download_vars)
#Save to file
for i, var_name in enumerate(save_var_names):
ncvars[var_name][k, :] = save_vars[i]
profiling_data_sim_runner["end"]["t_nc_write"] += time.time()
#Write progress to screen
print_string = progress_printer.getPrintString(t_end)
if (print_string):
logger.debug(print_string)
logger.debug("Simulated to t={:f} in {:d} timesteps (average dt={:f})".format(t_end, sim.simSteps(), sim.simTime() / sim.simSteps()))
return outdata.filename, profiling_data_sim_runner, sim.profiling_data_mpi
class Timer(object):
"""
Class which keeps track of time spent for a section of code
"""
def __init__(self, tag, log_level=logging.DEBUG):
self.tag = tag
self.log_level = log_level
self.logger = logging.getLogger(__name__)
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
self.end = time.time()
self.secs = self.end - self.start
self.msecs = self.secs * 1000 # millisecs
self.logger.log(self.log_level, "%s: %f ms", self.tag, self.msecs)
def elapsed(self):
return time.time() - self.start
class PopenFileBuffer(object):
"""
Simple class for holding a set of tempfiles
for communicating with a subprocess
"""
def __init__(self):
self.stdout = tempfile.TemporaryFile(mode='w+t')
self.stderr = tempfile.TemporaryFile(mode='w+t')
def __del__(self):
self.stdout.close()
self.stderr.close()
def read(self):
self.stdout.seek(0)
cout = self.stdout.read()
self.stdout.seek(0, 2)
self.stderr.seek(0)
cerr = self.stderr.read()
self.stderr.seek(0, 2)
return cout, cerr
class IPEngine(object):
"""
Class for starting IPEngines for MPI processing in IPython
"""
def __init__(self, n_engines):
self.logger = logging.getLogger(__name__)
#Start ipcontroller
self.logger.info("Starting IPController")
self.c_buff = PopenFileBuffer()
c_cmd = ["ipcontroller", "--ip='*'"]
c_params = dict()
c_params['stderr'] = self.c_buff.stderr
c_params['stdout'] = self.c_buff.stdout
c_params['shell'] = False
if os.name == 'nt':
c_params['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP
self.c = subprocess.Popen(c_cmd, **c_params)
#Wait until controller is running
time.sleep(3)
#Start engines
self.logger.info("Starting IPEngines")
self.e_buff = PopenFileBuffer()
e_cmd = ["mpiexec", "-n", str(n_engines), "ipengine", "--mpi"]
e_params = dict()
e_params['stderr'] = self.e_buff.stderr
e_params['stdout'] = self.e_buff.stdout
e_params['shell'] = False
if os.name == 'nt':
e_params['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP
self.e = subprocess.Popen(e_cmd, **e_params)
# attach to a running cluster
import ipyparallel
self.cluster = ipyparallel.Client()#profile='mpi')
time.sleep(3)
while(len(self.cluster.ids) != n_engines):
time.sleep(0.5)
self.logger.info("Waiting for cluster...")
self.cluster = ipyparallel.Client()#profile='mpi')
self.logger.info("Done")
def __del__(self):
self.shutdown()
def shutdown(self):
if (self.e is not None):
if (os.name == 'nt'):
self.logger.warn("Sending CTRL+C to IPEngine")
self.e.send_signal(signal.CTRL_C_EVENT)
try:
self.e.communicate(timeout=3)
self.e.kill()
except subprocess.TimeoutExpired:
self.logger.warn("Killing IPEngine")
self.e.kill()
self.e.communicate()
self.e = None
cout, cerr = self.e_buff.read()
self.logger.info("IPEngine cout: {:s}".format(cout))
self.logger.info("IPEngine cerr: {:s}".format(cerr))
self.e_buff = None
gc.collect()
if (self.c is not None):
if (os.name == 'nt'):
self.logger.warn("Sending CTRL+C to IPController")
self.c.send_signal(signal.CTRL_C_EVENT)
try:
self.c.communicate(timeout=3)
self.c.kill()
except subprocess.TimeoutExpired:
self.logger.warn("Killing IPController")
self.c.kill()
self.c.communicate()
self.c = None
cout, cerr = self.c_buff.read()
self.logger.info("IPController cout: {:s}".format(cout))
self.logger.info("IPController cerr: {:s}".format(cerr))
self.c_buff = None
gc.collect()
class DataDumper(object):
"""
Simple class for holding a netCDF4 object
(handles opening and closing in a nice way)
Use as
with DataDumper("filename") as data:
...
"""
def __init__(self, filename, *args, **kwargs):
self.logger = logging.getLogger(__name__)
#Create directory if needed
filename = os.path.abspath(filename)
dirname = os.path.dirname(filename)
if dirname and not os.path.isdir(dirname):
self.logger.info("Creating directory " + dirname)
os.makedirs(dirname)
#Get mode of file if we have that
mode = None
if (args):
mode = args[0]
elif (kwargs and 'mode' in kwargs.keys()):
mode = kwargs['mode']
#Create new unique file if writing
if (mode):
if (("w" in mode) or ("+" in mode) or ("a" in mode)):
i = 0
stem, ext = os.path.splitext(filename)
while (os.path.isfile(filename)):
filename = "{:s}_{:04d}{:s}".format(stem, i, ext)
i = i+1
self.filename = os.path.abspath(filename)
#Save arguments
self.args = args
self.kwargs = kwargs
#Log output
self.logger.info("Initialized " + self.filename)
def __enter__(self):
self.logger.info("Opening " + self.filename)
if (self.args):
self.logger.info("Arguments: " + str(self.args))
if (self.kwargs):
self.logger.info("Keyword arguments: " + str(self.kwargs))
self.ncfile = netCDF4.Dataset(self.filename, *self.args, **self.kwargs)
return self
def __exit__(self, *args):
self.logger.info("Closing " + self.filename)
self.ncfile.close()
def toJson(in_dict):
out_dict = in_dict.copy()
for key in out_dict:
if isinstance(out_dict[key], np.ndarray):
out_dict[key] = out_dict[key].tolist()
else:
try:
json.dumps(out_dict[key])
except:
out_dict[key] = str(out_dict[key])
return json.dumps(out_dict)
class ProgressPrinter(object):
"""
Small helper class for
"""
def __init__(self, total_steps, print_every=5):
self.logger = logging.getLogger(__name__)
self.start = time.time()
self.total_steps = total_steps
self.print_every = print_every
self.next_print_time = self.print_every
self.last_step = 0
self.secs_per_iter = None
def getPrintString(self, step):
elapsed = time.time() - self.start
if (elapsed > self.next_print_time):
dt = elapsed - (self.next_print_time - self.print_every)
dsteps = step - self.last_step
steps_remaining = self.total_steps - step
if (dsteps == 0):
return
self.last_step = step
self.next_print_time = elapsed + self.print_every
if not self.secs_per_iter:
self.secs_per_iter = dt / dsteps
self.secs_per_iter = 0.2*self.secs_per_iter + 0.8*(dt / dsteps)
remaining_time = steps_remaining * self.secs_per_iter
return "{:s}. Total: {:s}, elapsed: {:s}, remaining: {:s}".format(
ProgressPrinter.progressBar(step, self.total_steps),
ProgressPrinter.timeString(elapsed + remaining_time),
ProgressPrinter.timeString(elapsed),
ProgressPrinter.timeString(remaining_time))
def timeString(seconds):
seconds = int(max(seconds, 1))
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
periods = [('h', hours), ('m', minutes), ('s', seconds)]
time_string = ' '.join('{}{}'.format(value, name)
for name, value in periods
if value)
return time_string
def progressBar(step, total_steps, width=30):
progress = np.round(width * step / total_steps).astype(np.int32)
progressbar = "0% [" + "#"*(progress) + "="*(width-progress) + "] 100%"
return progressbar
"""
Class that holds 2D data
"""
class CudaArray2D:
"""
Uploads initial data to the CUDA device
"""
def __init__(self, stream, nx, ny, x_halo, y_halo, cpu_data=None, dtype=np.float32):
self.logger = logging.getLogger(__name__)
self.nx = nx
self.ny = ny
self.x_halo = x_halo
self.y_halo = y_halo
nx_halo = nx + 2*x_halo
ny_halo = ny + 2*y_halo
#self.logger.debug("Allocating [%dx%d] buffer", self.nx, self.ny)
#Should perhaps use pycuda.driver.mem_alloc_data.pitch() here
#Initialize an array on GPU with zeros
#self.data = pycuda.gpuarray.zeros((ny_halo, nx_halo), dtype)
self.data_h = np.zeros((ny_halo, nx_halo), dtype="float32")
num_bytes = self.data_h.size * self.data_h.itemsize
# init device array and upload host data
self.data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=(ny_halo, nx_halo))
# copy data from host to device
hip_check(hip.hipMemcpy(self.data,self.data_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))
#For returning to download (No counterpart in hip-python)
#self.memorypool = PageLockedMemoryPool()
#If we don't have any data, just allocate and return
if cpu_data is None:
return
#Make sure data is in proper format
assert cpu_data.shape == (ny_halo, nx_halo) or cpu_data.shape == (self.ny, self.nx), "Wrong shape of data %s vs %s / %s" % (str(cpu_data.shape), str((self.ny, self.nx)), str((ny_halo, nx_halo)))
assert cpu_data.itemsize == 4, "Wrong size of data type"
assert not np.isfortran(cpu_data), "Wrong datatype (Fortran, expected C)"
#Create copy object from host to device
x = (nx_halo - cpu_data.shape[1]) // 2
y = (ny_halo - cpu_data.shape[0]) // 2
self.upload(stream, cpu_data, extent=[x, y, cpu_data.shape[1], cpu_data.shape[0]])
#self.logger.debug("Buffer <%s> [%dx%d]: Allocated ", int(self.data.gpudata), self.nx, self.ny)
def __del__(self, *args):
#self.logger.debug("Buffer <%s> [%dx%d]: Releasing ", int(self.data.gpudata), self.nx, self.ny)
self.data.gpudata.free()
self.data = None
"""
Enables downloading data from GPU to Python
"""
def download(self, stream, cpu_data=None, asynch=False, extent=None):
if (extent is None):
x = self.x_halo
y = self.y_halo
nx = self.nx
ny = self.ny
else:
x, y, nx, ny = extent
if (cpu_data is None):
#self.logger.debug("Downloading [%dx%d] buffer", self.nx, self.ny)
#Allocate host memory
#The following fails, don't know why (crashes python)
#cpu_data = cuda.pagelocked_empty((int(ny), int(nx)), dtype=np.float32, mem_flags=cuda.host_alloc_flags.PORTABLE)
#see here type of memory: https://rocm.docs.amd.com/projects/hip-python/en/latest/python_api/hip.html#hip.hip.hipMemoryType
cpu_data = np.empty((ny, nx), dtype=np.float32)
num_bytes = cpu_data.size * cpu_data.itemsize
#hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs in the system, the memory can #be accessed directly by the GPU device
#hipHostMallocDefault:Memory is mapped and portable (default allocation)
#hipHostMallocPortable: memory is explicitely portable across different devices
cpu_data = hip_check(hip.hipHostMalloc(num_bytes,hip.hipHostMallocPortable))
#Non-pagelocked: cpu_data = np.empty((ny, nx), dtype=np.float32)
#cpu_data = self.memorypool.allocate((ny, nx), dtype=np.float32)
assert nx == cpu_data.shape[1]
assert ny == cpu_data.shape[0]
assert x+nx <= self.nx + 2*self.x_halo
assert y+ny <= self.ny + 2*self.y_halo
#Create copy object from device to host
#copy = cuda.Memcpy2D()
#copy.set_src_device(self.data.gpudata)
#copy.set_dst_host(cpu_data)
#Set offsets and pitch of source
#copy.src_x_in_bytes = int(x)*self.data.strides[1]
#copy.src_y = int(y)
#copy.src_pitch = self.data.strides[0]
#Set width in bytes to copy for each row and
#number of rows to copy
#copy.width_in_bytes = int(nx)*cpu_data.itemsize
#copy.height = int(ny)
#The equivalent of cuda.Memcpy2D in hip-python would be: but it fails with an error pointing to cpu_data
#and a message: "RuntimeError: hipError_t.hipErrorInvalidValue"
#shape = (nx,ny)
#num_bytes = cpu_data.size * cpu_data.itemsize
#dst_pitch_bytes = cpu_data.strides[0]
#src_pitch_bytes = num_bytes // shape[0]
#src_pitch_bytes = data.strides[0]
#width_bytes = int(nx)*cpu_data.itemsize
#height_Nrows = int(ny)
#hipMemcpy2D(dst, unsigned long dpitch, src, unsigned long spitch, unsigned long width, unsigned long height, kind)
#copy = hip_check(hip.hipMemcpy2D(cpu_data, #pointer to destination
# dst_pitch_bytes, #pitch of destination array
# data, #pointer to source
# src_pitch_bytes, #pitch of source array
# width_bytes, #number of bytes in each row
# height_Nrows, #number of rows to copy
# hip.hipMemcpyKind.hipMemcpyDeviceToHost)) #kind
#this is an alternative:
#copy from device to host
cpu_data = np.empty((ny, nx), dtype=np.float32)
num_bytes = cpu_data.size * cpu_data.itemsize
#hip.hipMemcpy(dst, src, unsigned long sizeBytes, kind)
copy = hip_check(hip.hipMemcpy(cpu_data,self.data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost))
copy(stream)
if asynch==False:
stream.synchronize()
return cpu_data
def upload(self, stream, cpu_data, extent=None):
if (extent is None):
x = self.x_halo
y = self.y_halo
nx = self.nx
ny = self.ny
else:
x, y, nx, ny = extent
assert(nx == cpu_data.shape[1])
assert(ny == cpu_data.shape[0])
assert(x+nx <= self.nx + 2*self.x_halo)
assert(y+ny <= self.ny + 2*self.y_halo)
#Create copy object from device to host
#Well this copy from src:host to dst:device AND NOT from device to host
#copy = cuda.Memcpy2D()
#copy.set_dst_device(self.data.gpudata)
#copy.set_src_host(cpu_data)
#Set offsets and pitch of source
#copy.dst_x_in_bytes = int(x)*self.data.strides[1]
#copy.dst_y = int(y)
#copy.dst_pitch = self.data.strides[0]
#Set width in bytes to copy for each row and
#number of rows to copy
#copy.width_in_bytes = int(nx)*cpu_data.itemsize
#copy.height = int(ny)
#copy from host de device
num_bytes = cpu_data.size * cpu_data.itemsize
self.data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=cpu_data.shape)
#hip.hipMemcpy(dst, src, unsigned long sizeBytes, kind)
copy = hip_check(hip.hipMemcpy(self.data,cpu_data,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))
copy(stream)
"""
Class that holds 2D data
"""
class CudaArray3D:
"""
Uploads initial data to the CL device
"""
def __init__(self, stream, nx, ny, nz, x_halo, y_halo, z_halo, cpu_data=None, dtype=np.float32):
self.logger = logging.getLogger(__name__)
self.nx = nx
self.ny = ny
self.nz = nz
self.x_halo = x_halo
self.y_halo = y_halo
self.z_halo = z_halo
nx_halo = nx + 2*x_halo
ny_halo = ny + 2*y_halo
nz_halo = nz + 2*z_halo
#self.logger.debug("Allocating [%dx%dx%d] buffer", self.nx, self.ny, self.nz)
#Should perhaps use pycuda.driver.mem_alloc_data.pitch() here
#self.data = pycuda.gpuarray.zeros((nz_halo, ny_halo, nx_halo), dtype)
self.data_h = np.zeros((nz_halo, ny_halo, nx_halo), dtype="float32")
num_bytes = self.data_h.size * self.data_h.itemsize
# init device array and upload host data
self.data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=(nz_halo, ny_halo, nx_halo))
# copy data from host to device
hip_check(hip.hipMemcpy(self.data,self.data_h,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))
#For returning to download
#self.memorypool = PageLockedMemoryPool()
#If we don't have any data, just allocate and return
if cpu_data is None:
return
#Make sure data is in proper format
assert cpu_data.shape == (nz_halo, ny_halo, nx_halo) or cpu_data.shape == (self.nz, self.ny, self.nx), "Wrong shape of data %s vs %s / %s" % (str(cpu_data.shape), str((self.nz, self.ny, self.nx)), str((nz_halo, ny_halo, nx_halo)))
assert cpu_data.itemsize == 4, "Wrong size of data type"
assert not np.isfortran(cpu_data), "Wrong datatype (Fortran, expected C)"
#Create copy object from host to device
#copy = cuda.Memcpy3D()
#copy.set_src_host(cpu_data)
#copy.set_dst_device(self.data.gpudata)
#Set offsets of destination
#x_offset = (nx_halo - cpu_data.shape[2]) // 2
#y_offset = (ny_halo - cpu_data.shape[1]) // 2
#z_offset = (nz_halo - cpu_data.shape[0]) // 2
#copy.dst_x_in_bytes = x_offset*self.data.strides[1]
#copy.dst_y = y_offset
#copy.dst_z = z_offset
#Set pitch of destination
#copy.dst_pitch = self.data.strides[0]
#Set width in bytes to copy for each row and
#number of rows to copy
#width = max(self.nx, cpu_data.shape[2])
#height = max(self.ny, cpu_data.shape[1])
#depth = max(self.nz, cpu-data.shape[0])
#copy.width_in_bytes = width*cpu_data.itemsize
#copy.height = height
#copy.depth = depth
#copy from host to device
num_bytes = cpu_data.size * cpu_data.itemsize
self.data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=cpu_data.shape)
#hip.hipMemcpy(dst, src, unsigned long sizeBytes, kind)
copy = hip_check(hip.hipMemcpy(self.data,cpu_data,num_bytes,hip.hipMemcpyKind.hipMemcpyHostToDevice))
#Perform the copy
copy(stream)
#self.logger.debug("Buffer <%s> [%dx%d]: Allocated ", int(self.data.gpudata), self.nx, self.ny)
def __del__(self, *args):
#self.logger.debug("Buffer <%s> [%dx%d]: Releasing ", int(self.data.gpudata), self.nx, self.ny)
self.data.gpudata.free()
self.data = None
"""
Enables downloading data from GPU to Python
"""
def download(self, stream, asynch=False):
#self.logger.debug("Downloading [%dx%d] buffer", self.nx, self.ny)
#Allocate host memory
#cpu_data = cuda.pagelocked_empty((self.ny, self.nx), np.float32)
cpu_data = np.empty((self.nz, self.ny, self.nx), dtype=np.float32)
#cpu_data = self.memorypool.allocate((self.nz, self.ny, self.nx), dtype=np.float32)
#Create copy object from device to host
#copy = cuda.Memcpy2D()
#copy.set_src_device(self.data.gpudata)
#copy.set_dst_host(cpu_data)
#Set offsets and pitch of source
#copy.src_x_in_bytes = self.x_halo*self.data.strides[1]
#copy.src_y = self.y_halo
#copy.src_z = self.z_halo
#copy.src_pitch = self.data.strides[0]
#Set width in bytes to copy for each row and
#number of rows to copy
#copy.width_in_bytes = self.nx*cpu_data.itemsize
#copy.height = self.ny
#copy.depth = self.nz
#copy from device to host
num_bytes = cpu_data.size * cpu_data.itemsize
#hip.hipMemcpy(dst, src, unsigned long sizeBytes, kind)
copy = hip_check(hip.hipMemcpy(cpu_data,self.data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost))
copy(stream)
if asynch==False:
stream.synchronize()
return cpu_data
"""
A class representing an Arakawa A type (unstaggered, logically Cartesian) grid
"""
class ArakawaA2D:
def __init__(self, stream, nx, ny, halo_x, halo_y, cpu_variables):
"""
Uploads initial data to the GPU device
"""
self.logger = logging.getLogger(__name__)
self.gpu_variables = []
for cpu_variable in cpu_variables:
self.gpu_variables += [CudaArray2D(stream, nx, ny, halo_x, halo_y, cpu_variable)]
def __getitem__(self, key):
assert type(key) == int, "Indexing is int based"
if (key > len(self.gpu_variables) or key < 0):
raise IndexError("Out of bounds")
return self.gpu_variables[key]
def download(self, stream, variables=None):
"""
Enables downloading data from the GPU device to Python
"""
if variables is None:
variables=range(len(self.gpu_variables))
cpu_variables = []
for i in variables:
assert i < len(self.gpu_variables), "Variable {:d} is out of range".format(i)
cpu_variables += [self.gpu_variables[i].download(stream, asynch=True)]
#stream.synchronize()
return cpu_variables
#hipblas
def sum_hipblas(self, num_elements, data):
num_bytes_r = np.dtype(np.float32).itemsize
result_d = hip_check(hip.hipMalloc(num_bytes_r))
result_h = np.zeros(1, dtype=np.float32)
print("--bytes:", num_bytes_r)
# call hipblasSaxpy + initialization
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasSaxpy(handle, num_elements, ctypes.addressof(alpha), x_d, 1, y_d, 1))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasSasum(handle, num_elements, data, 1, result_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in result_d) back to host (store in result_h)
hip_check(hip.hipMemcpy(result_h,result_d,num_bytes_r,hip.hipMemcpyKind.hipMemcpyDeviceToHost))
# clean up
hip_check(hip.hipFree(data))
return result_h
def check(self):
"""
Checks that data is still sane
"""
for i, gpu_variable in enumerate(self.gpu_variables):
#compute sum with hipblas
#var_sum = pycuda.gpuarray.sum(gpu_variable.data).get()
var_sum = self.sum_hipblas(gpu_variable.ny,gpu_variable.data)
self.logger.debug("Data %d with size [%d x %d] has average %f", i, gpu_variable.nx, gpu_variable.ny, var_sum / (gpu_variable.nx * gpu_variable.ny))
assert np.isnan(var_sum) == False, "Data contains NaN values!"

View File

@ -0,0 +1,328 @@
# -*- coding: utf-8 -*-
"""
This python module implements Cuda context handling
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
import time
import re
import io
import hashlib
import logging
import gc
#import pycuda.compiler as cuda_compiler
#import pycuda.gpuarray
#import pycuda.driver as cuda
from hip import hip,hiprtc
from hip import rccl
from GPUSimulators import Autotuner, Common
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
"""
Class which keeps track of the CUDA context and some helper functions
"""
class CudaContext(object):
def __init__(self, device=None, context_flags=None, use_cache=True, autotuning=True):
"""
Create a new CUDA context
Set device to an id or pci_bus_id to select a specific GPU
Set context_flags to cuda.ctx_flags.SCHED_BLOCKING_SYNC for a blocking context
"""
self.use_cache = use_cache
self.logger = logging.getLogger(__name__)
self.modules = {}
self.module_path = os.path.dirname(os.path.realpath(__file__))
#Initialize cuda (must be first call to PyCUDA)
##cuda.init(flags=0)
##self.logger.info("PyCUDA version %s", str(pycuda.VERSION_TEXT))
#Print some info about CUDA
##self.logger.info("CUDA version %s", str(cuda.get_version()))
#self.logger.info("Driver version %s", str(cuda.get_driver_version()))
self.logger.info("Driver version %s", str(hip_check(hip.hipDriverGetVersion())))
if device is None:
device = 0
self.cuda_device = hip.Device(device)
#self.logger.info("Using device %d/%d '%s' (%s) GPU", device, cuda.Device.count(), self.cuda_device.name(), self.cuda_device.pci_bus_id())
self.logger.info("Using device %d/%d '%s' (%s) GPU", device, hip_check(hip.hipGetDeviceCount()))
#self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability()))
self.logger.debug(" => compute capability: %s", str(self.hip.hipDeviceComputeCapability(device)))
# Create the CUDA context
#In HIP there is no need to specify a scheduling policy (it is abstracted). Here the HIP runtime system manages the workload to fit a specifc target architecture
#if context_flags is None:
# context_flags=cuda.ctx_flags.SCHED_AUTO
#self.cuda_context = self.cuda_device.make_context(flags=context_flags)
#free, total = cuda.mem_get_info()
total = hip_check(hip.hipDeviceTotalMem(device))
#self.logger.debug(" => memory: %d / %d MB available", int(free/(1024*1024)), int(total/(1024*1024)))
self.logger.debug(" => memory: %d / %d MB available", int(total/(1024*1024)))
#self.logger.info("Created context handle <%s>", str(self.cuda_context.handle))
#Create cache dir for cubin files
self.cache_path = os.path.join(self.module_path, "cuda_cache")
if (self.use_cache):
if not os.path.isdir(self.cache_path):
os.mkdir(self.cache_path)
self.logger.info("Using CUDA cache dir %s", self.cache_path)
self.autotuner = None
if (autotuning):
self.logger.info("Autotuning enabled. It may take several minutes to run the code the first time: have patience")
self.autotuner = Autotuner.Autotuner()
# def __del__(self, *args):
# self.logger.info("Cleaning up CUDA context handle <%s>", str(self.cuda_context.handle))
# Loop over all contexts in stack, and remove "this"
# other_contexts = []
# while (cuda.Context.get_current() != None):
# context = cuda.Context.get_current()
# if (context.handle != self.cuda_context.handle):
# self.logger.debug("<%s> Popping <%s> (*not* ours)", str(self.cuda_context.handle), str(context.handle))
# other_contexts = [context] + other_contexts
# cuda.Context.pop()
# else:
# self.logger.debug("<%s> Popping <%s> (ours)", str(self.cuda_context.handle), str(context.handle))
# cuda.Context.pop()
# Add all the contexts we popped that were not our own
# for context in other_contexts:
# self.logger.debug("<%s> Pushing <%s>", str(self.cuda_context.handle), str(context.handle))
# cuda.Context.push(context)
# self.logger.debug("<%s> Detaching", str(self.cuda_context.handle))
# self.cuda_context.detach()
# def __str__(self):
# return "CudaContext id " + str(self.cuda_context.handle)
def hash_kernel(kernel_filename, include_dirs):
# Generate a kernel ID for our caches
num_includes = 0
max_includes = 100
kernel_hasher = hashlib.md5()
logger = logging.getLogger(__name__)
# Loop over file and includes, and check if something has changed
files = [kernel_filename]
while len(files):
if (num_includes > max_includes):
raise("Maximum number of includes reached - circular include in {:}?".format(kernel_filename))
filename = files.pop()
#logger.debug("Hashing %s", filename)
modified = os.path.getmtime(filename)
# Open the file
with io.open(filename, "r") as file:
# Search for #inclue <something> and also hash the file
file_str = file.read()
kernel_hasher.update(file_str.encode('utf-8'))
kernel_hasher.update(str(modified).encode('utf-8'))
#Find all includes
includes = re.findall('^\W*#include\W+(.+?)\W*$', file_str, re.M)
# Loop over everything that looks like an include
for include_file in includes:
#Search through include directories for the file
file_path = os.path.dirname(filename)
for include_path in [file_path] + include_dirs:
# If we find it, add it to list of files to check
temp_path = os.path.join(include_path, include_file)
if (os.path.isfile(temp_path)):
files = files + [temp_path]
num_includes = num_includes + 1 #For circular includes...
break
return kernel_hasher.hexdigest()
"""
Reads a text file and creates an OpenCL kernel from that
"""
def get_module(self, kernel_filename,
include_dirs=[], \
defines={}, \
compile_args={'no_extern_c', True}, jit_compile_args={}):
"""
Helper function to print compilation output
"""
def cuda_compile_message_handler(compile_success_bool, info_str, error_str):
self.logger.debug("Compilation returned %s", str(compile_success_bool))
if info_str:
self.logger.debug("Info: %s", info_str)
if error_str:
self.logger.debug("Error: %s", error_str)
kernel_filename = os.path.normpath(kernel_filename)
kernel_path = os.path.abspath(os.path.join(self.module_path, kernel_filename))
#self.logger.debug("Getting %s", kernel_filename)
# Create a hash of the kernel options
options_hasher = hashlib.md5()
options_hasher.update(str(defines).encode('utf-8') + str(compile_args).encode('utf-8'));
options_hash = options_hasher.hexdigest()
# Create hash of kernel souce
source_hash = CudaContext.hash_kernel( \
kernel_path, \
include_dirs=[self.module_path] + include_dirs)
# Create final hash
root, ext = os.path.splitext(kernel_filename)
kernel_hash = root \
+ "_" + source_hash \
+ "_" + options_hash \
+ ext
cached_kernel_filename = os.path.join(self.cache_path, kernel_hash)
# If we have the kernel in our hashmap, return it
if (kernel_hash in self.modules.keys()):
self.logger.debug("Found kernel %s cached in hashmap (%s)", kernel_filename, kernel_hash)
return self.modules[kernel_hash]
# If we have it on disk, return it
elif (self.use_cache and os.path.isfile(cached_kernel_filename)):
self.logger.debug("Found kernel %s cached on disk (%s)", kernel_filename, kernel_hash)
with io.open(cached_kernel_filename, "rb") as file:
file_str = file.read()
#No hip counterpart of module_from_buffer
module = cuda.module_from_buffer(file_str, message_handler=cuda_compile_message_handler, **jit_compile_args)
self.modules[kernel_hash] = module
return module
# Otherwise, compile it from source
else:
self.logger.debug("Compiling %s (%s)", kernel_filename, kernel_hash)
#Create kernel string
kernel_string = ""
for key, value in defines.items():
kernel_string += "#define {:s} {:s}\n".format(str(key), str(value))
kernel_string += '#include "{:s}"'.format(os.path.join(self.module_path, kernel_filename))
if (self.use_cache):
cached_kernel_dir = os.path.dirname(cached_kernel_filename)
if not os.path.isdir(cached_kernel_dir):
os.mkdir(cached_kernel_dir)
with io.open(cached_kernel_filename + ".txt", "w") as file:
file.write(kernel_string)
with Common.Timer("compiler") as timer:
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="The CUDA compiler succeeded, but said the following:\nkernel.cu", category=UserWarning)
#cubin = cuda_compiler.compile(kernel_string, include_dirs=include_dirs, cache_dir=False, **compile_args)
#module = cuda.module_from_buffer(cubin, message_handler=cuda_compile_message_handler, **jit_compile_args)
#HIP version of compilation: but "name_of_fct" needs to be defined. e.g.
#source = b"""\
#extern "C" __global__ void name_of_fct(float factor, int n, short unused1, int unused2, float unused3, float *x) {
#int tid = threadIdx.x + blockIdx.x * blockDim.x;
#if (tid < n) {
#x[tid] *= factor;
# }
#}
#"""
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_string, b"name_of_fct", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
#kernel = hip_check(hip.hipModuleGetFunction(module, b"name_of_fct"))
if (self.use_cache):
with io.open(cached_kernel_filename, "wb") as file:
file.write(cubin)
self.modules[kernel_hash] = module
return module
"""
Clears the kernel cache (useful for debugging & development)
"""
def clear_kernel_cache(self):
self.logger.debug("Clearing cache")
self.modules = {}
gc.collect()
"""
Synchronizes all streams etc
"""
def synchronize(self):
self.cuda_context.synchronize()

View File

@ -0,0 +1,272 @@
# -*- coding: utf-8 -*-
"""
This python module implements Cuda context handling
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
import time
import re
import io
import hashlib
import logging
import gc
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
import pycuda.driver as cuda
from GPUSimulators import Autotuner, Common
"""
Class which keeps track of the CUDA context and some helper functions
"""
class CudaContext(object):
def __init__(self, device=None, context_flags=None, use_cache=True, autotuning=True):
"""
Create a new CUDA context
Set device to an id or pci_bus_id to select a specific GPU
Set context_flags to cuda.ctx_flags.SCHED_BLOCKING_SYNC for a blocking context
"""
self.use_cache = use_cache
self.logger = logging.getLogger(__name__)
self.modules = {}
self.module_path = os.path.dirname(os.path.realpath(__file__))
#Initialize cuda (must be first call to PyCUDA)
cuda.init(flags=0)
self.logger.info("PyCUDA version %s", str(pycuda.VERSION_TEXT))
#Print some info about CUDA
self.logger.info("CUDA version %s", str(cuda.get_version()))
self.logger.info("Driver version %s", str(cuda.get_driver_version()))
if device is None:
device = 0
self.cuda_device = cuda.Device(device)
self.logger.info("Using device %d/%d '%s' (%s) GPU", device, cuda.Device.count(), self.cuda_device.name(), self.cuda_device.pci_bus_id())
self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability()))
# Create the CUDA context
if context_flags is None:
context_flags=cuda.ctx_flags.SCHED_AUTO
self.cuda_context = self.cuda_device.make_context(flags=context_flags)
free, total = cuda.mem_get_info()
self.logger.debug(" => memory: %d / %d MB available", int(free/(1024*1024)), int(total/(1024*1024)))
self.logger.info("Created context handle <%s>", str(self.cuda_context.handle))
#Create cache dir for cubin files
self.cache_path = os.path.join(self.module_path, "cuda_cache")
if (self.use_cache):
if not os.path.isdir(self.cache_path):
os.mkdir(self.cache_path)
self.logger.info("Using CUDA cache dir %s", self.cache_path)
self.autotuner = None
if (autotuning):
self.logger.info("Autotuning enabled. It may take several minutes to run the code the first time: have patience")
self.autotuner = Autotuner.Autotuner()
def __del__(self, *args):
self.logger.info("Cleaning up CUDA context handle <%s>", str(self.cuda_context.handle))
# Loop over all contexts in stack, and remove "this"
other_contexts = []
while (cuda.Context.get_current() != None):
context = cuda.Context.get_current()
if (context.handle != self.cuda_context.handle):
self.logger.debug("<%s> Popping <%s> (*not* ours)", str(self.cuda_context.handle), str(context.handle))
other_contexts = [context] + other_contexts
cuda.Context.pop()
else:
self.logger.debug("<%s> Popping <%s> (ours)", str(self.cuda_context.handle), str(context.handle))
cuda.Context.pop()
# Add all the contexts we popped that were not our own
for context in other_contexts:
self.logger.debug("<%s> Pushing <%s>", str(self.cuda_context.handle), str(context.handle))
cuda.Context.push(context)
self.logger.debug("<%s> Detaching", str(self.cuda_context.handle))
self.cuda_context.detach()
def __str__(self):
return "CudaContext id " + str(self.cuda_context.handle)
def hash_kernel(kernel_filename, include_dirs):
# Generate a kernel ID for our caches
num_includes = 0
max_includes = 100
kernel_hasher = hashlib.md5()
logger = logging.getLogger(__name__)
# Loop over file and includes, and check if something has changed
files = [kernel_filename]
while len(files):
if (num_includes > max_includes):
raise("Maximum number of includes reached - circular include in {:}?".format(kernel_filename))
filename = files.pop()
#logger.debug("Hashing %s", filename)
modified = os.path.getmtime(filename)
# Open the file
with io.open(filename, "r") as file:
# Search for #inclue <something> and also hash the file
file_str = file.read()
kernel_hasher.update(file_str.encode('utf-8'))
kernel_hasher.update(str(modified).encode('utf-8'))
#Find all includes
includes = re.findall('^\W*#include\W+(.+?)\W*$', file_str, re.M)
# Loop over everything that looks like an include
for include_file in includes:
#Search through include directories for the file
file_path = os.path.dirname(filename)
for include_path in [file_path] + include_dirs:
# If we find it, add it to list of files to check
temp_path = os.path.join(include_path, include_file)
if (os.path.isfile(temp_path)):
files = files + [temp_path]
num_includes = num_includes + 1 #For circular includes...
break
return kernel_hasher.hexdigest()
"""
Reads a text file and creates an OpenCL kernel from that
"""
def get_module(self, kernel_filename,
include_dirs=[], \
defines={}, \
compile_args={'no_extern_c', True}, jit_compile_args={}):
"""
Helper function to print compilation output
"""
def cuda_compile_message_handler(compile_success_bool, info_str, error_str):
self.logger.debug("Compilation returned %s", str(compile_success_bool))
if info_str:
self.logger.debug("Info: %s", info_str)
if error_str:
self.logger.debug("Error: %s", error_str)
kernel_filename = os.path.normpath(kernel_filename)
kernel_path = os.path.abspath(os.path.join(self.module_path, kernel_filename))
#self.logger.debug("Getting %s", kernel_filename)
# Create a hash of the kernel options
options_hasher = hashlib.md5()
options_hasher.update(str(defines).encode('utf-8') + str(compile_args).encode('utf-8'));
options_hash = options_hasher.hexdigest()
# Create hash of kernel souce
source_hash = CudaContext.hash_kernel( \
kernel_path, \
include_dirs=[self.module_path] + include_dirs)
# Create final hash
root, ext = os.path.splitext(kernel_filename)
kernel_hash = root \
+ "_" + source_hash \
+ "_" + options_hash \
+ ext
cached_kernel_filename = os.path.join(self.cache_path, kernel_hash)
# If we have the kernel in our hashmap, return it
if (kernel_hash in self.modules.keys()):
self.logger.debug("Found kernel %s cached in hashmap (%s)", kernel_filename, kernel_hash)
return self.modules[kernel_hash]
# If we have it on disk, return it
elif (self.use_cache and os.path.isfile(cached_kernel_filename)):
self.logger.debug("Found kernel %s cached on disk (%s)", kernel_filename, kernel_hash)
with io.open(cached_kernel_filename, "rb") as file:
file_str = file.read()
module = cuda.module_from_buffer(file_str, message_handler=cuda_compile_message_handler, **jit_compile_args)
self.modules[kernel_hash] = module
return module
# Otherwise, compile it from source
else:
self.logger.debug("Compiling %s (%s)", kernel_filename, kernel_hash)
#Create kernel string
kernel_string = ""
for key, value in defines.items():
kernel_string += "#define {:s} {:s}\n".format(str(key), str(value))
kernel_string += '#include "{:s}"'.format(os.path.join(self.module_path, kernel_filename))
if (self.use_cache):
cached_kernel_dir = os.path.dirname(cached_kernel_filename)
if not os.path.isdir(cached_kernel_dir):
os.mkdir(cached_kernel_dir)
with io.open(cached_kernel_filename + ".txt", "w") as file:
file.write(kernel_string)
with Common.Timer("compiler") as timer:
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="The CUDA compiler succeeded, but said the following:\nkernel.cu", category=UserWarning)
cubin = cuda_compiler.compile(kernel_string, include_dirs=include_dirs, cache_dir=False, **compile_args)
module = cuda.module_from_buffer(cubin, message_handler=cuda_compile_message_handler, **jit_compile_args)
if (self.use_cache):
with io.open(cached_kernel_filename, "wb") as file:
file.write(cubin)
self.modules[kernel_hash] = module
return module
"""
Clears the kernel cache (useful for debugging & development)
"""
def clear_kernel_cache(self):
self.logger.debug("Clearing cache")
self.modules = {}
gc.collect()
"""
Synchronizes all streams etc
"""
def synchronize(self):
self.cuda_context.synchronize()

View File

@ -0,0 +1,575 @@
# -*- coding: utf-8 -*-
"""
This python module implements the 2nd order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class EE2D_KP07_dimsplit (BaseSimulator):
"""
Initialization routine
rho: Density
rho_u: Momentum along x-axis
rho_v: Momentum along y-axis
E: energy
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis
dy: Grid cell spacing along y-axis
dt: Size of each timestep
g: Gravitational constant
gamma: Gas constant
p: pressure
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
rho, rho_u, rho_v, E,
nx, ny,
dx, dy,
g,
gamma,
theta=1.3,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=8):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height)
self.g = np.float32(g)
self.gamma = np.float32(gamma)
self.theta = np.float32(theta)
#Get kernels
#module = context.get_module("cuda/EE2D_KP07_dimsplit.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
#self.kernel = module.get_function("KP07DimsplitKernel")
#self.kernel.prepare("iiffffffiiPiPiPiPiPiPiPiPiPiiii")
#
kernel_file_path = os.path.abspath(os.path.join('cuda', 'EE2D_KP07_dimsplit.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"KP07DimsplitKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"KP07DimsplitKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[rho, rho_u, rho_v, E])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
# init device array cfl_data
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(rho_u/rho) + np.sqrt(gamma*rho)))
dt_y = np.min(self.dy / (np.abs(rho_v/rho) + np.sqrt(gamma*rho)))
self.dt = min(dt_x, dt_y)
self.cfl_data.fill(self.dt, stream=self.stream)
def substep(self, dt, step_number, external=True, internal=True):
self.substepDimsplit(0.5*dt, step_number, external, internal)
def substepDimsplit(self, dt, substep, external, internal):
if external and internal:
#print("COMPLETE DOMAIN (dt=" + str(dt) + ")")
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.gamma,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u0[3].data.gpudata, self.u0[3].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.u1[3].data.gpudata, self.u1[3].data.strides[0],
# self.cfl_data.gpudata,
# 0, 0,
# self.nx, self.ny)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
0, 0,
ctypes.c_int(self.nx), ctypes.c_int(self.ny)
)
)
)
hip_check(hip.hipDeviceSynchronize())
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--External & Internal: Launching Kernel is ok")
return
if external and not internal:
###################################
# XXX: Corners are treated twice! #
###################################
ns_grid_size = (self.grid_size[0], 1)
# NORTH
# (x0, y0) x (x1, y1)
# (0, ny-y_halo) x (nx, ny)
# self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.gamma,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u0[3].data.gpudata, self.u0[3].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.u1[3].data.gpudata, self.u1[3].data.strides[0],
# self.cfl_data.gpudata,
# 0, self.ny - int(self.u0[0].y_halo),
# self.nx, self.ny)
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*ns_grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
0, ctypes.c_int(self.ny) - ctypes.c_int(self.u0[0].y_halo),
ctypes.c_int(self.nx), ctypes.c_int(self.ny)
)
)
)
# SOUTH
# (x0, y0) x (x1, y1)
# (0, 0) x (nx, y_halo)
# self.kernel.prepared_async_call(ns_grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.gamma,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u0[3].data.gpudata, self.u0[3].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.u1[3].data.gpudata, self.u1[3].data.strides[0],
# self.cfl_data.gpudata,
# 0, 0,
# self.nx, int(self.u0[0].y_halo))
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*ns_grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
0, 0,
ctypes.c_int(self.nx), ctypes.c_int(self.u0[0].y_halo)
)
)
)
we_grid_size = (1, self.grid_size[1])
# WEST
# (x0, y0) x (x1, y1)
# (0, 0) x (x_halo, ny)
# self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.gamma,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u0[3].data.gpudata, self.u0[3].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.u1[3].data.gpudata, self.u1[3].data.strides[0],
# self.cfl_data.gpudata,
# 0, 0,
# int(self.u0[0].x_halo), self.ny)
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*we_grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
0, 0,
ctypes.c_int(self.u0[0].x_halo), ctypes.c_int(self.ny)
)
)
)
# EAST
# (x0, y0) x (x1, y1)
# (nx-x_halo, 0) x (nx, ny)
# self.kernel.prepared_async_call(we_grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.gamma,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u0[3].data.gpudata, self.u0[3].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.u1[3].data.gpudata, self.u1[3].data.strides[0],
# self.cfl_data.gpudata,
# self.nx - int(self.u0[0].x_halo), 0,
# self.nx, self.ny)
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*we_grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
ctypes.c_int(self.nx) - ctypes.c_int(self.u0[0].x_halo), 0,
ctypes.c_int(self.nx), ctypes.c_int(self.ny)
)
)
)
hip_check(hip.hipDeviceSynchronize())
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--External and not Internal: Launching Kernel is ok")
return
if internal and not external:
# INTERNAL DOMAIN
# (x0, y0) x (x1, y1)
# (x_halo, y_halo) x (nx - x_halo, ny - y_halo)
self.kernel.prepared_async_call(self.grid_size, self.block_size, self.internal_stream,
self.nx, self.ny,
self.dx, self.dy, dt,
self.g,
self.gamma,
self.theta,
substep,
self.boundary_conditions,
self.u0[0].data.gpudata, self.u0[0].data.strides[0],
self.u0[1].data.gpudata, self.u0[1].data.strides[0],
self.u0[2].data.gpudata, self.u0[2].data.strides[0],
self.u0[3].data.gpudata, self.u0[3].data.strides[0],
self.u1[0].data.gpudata, self.u1[0].data.strides[0],
self.u1[1].data.gpudata, self.u1[1].data.strides[0],
self.u1[2].data.gpudata, self.u1[2].data.strides[0],
self.u1[3].data.gpudata, self.u1[3].data.strides[0],
self.cfl_data.gpudata,
int(self.u0[0].x_halo), int(self.u0[0].y_halo),
self.nx - int(self.u0[0].x_halo), self.ny - int(self.u0[0].y_halo))
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.internal_stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.gamma),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u0[3].data), ctypes.c_float(self.u0[3].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
ctypes.c_float(self.u1[3].data), ctypes.c_float(self.u1[3].data.strides[0]),
self.cfl_data,
ctypes.c_int(self.u0[0].x_halo), ctypes.c_int(self.u0[0].y_halo),
ctypes.c_int(self.nx) - ctypes.c_int(self.u0[0].x_halo), ctypes.c_int(self.ny) - ctypes.c_int(self.u0[0].y_halo)
)
)
)
hip_check(hip.hipDeviceSynchronize())
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Internal and not External: Launching Kernel is ok")
return
def swapBuffers(self):
self.u0, self.u1 = self.u1, self.u0
return
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
return
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

242
GPUSimulators/FORCE.py Normal file
View File

@ -0,0 +1,242 @@
# -*- coding: utf-8 -*-
"""
This python module implements the FORCE flux
for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations
"""
class FORCE (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
1,
block_width, block_height)
self.g = np.float32(g)
#Get kernels
# module = context.get_module("cuda/SWE2D_FORCE.cu.hip",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("FORCEKernel")
# self.kernel.prepare("iiffffiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_FORCE.cu'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"FORCEKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .FORCEKernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"FORCEKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
# self.u0, self.u1 = self.u1, self.u0
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .FORCEKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt

235
GPUSimulators/HLL.py Normal file
View File

@ -0,0 +1,235 @@
# -*- coding: utf-8 -*-
"""
This python module implements the HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Harten-Lax -van Leer approximate Riemann solver
"""
class HLL (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
1,
block_width, block_height);
self.g = np.float32(g)
#Get kernels
# module = context.get_module("cuda/SWE2D_HLL.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("HLLKernel")
# self.kernel.prepare("iiffffiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_HLL.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"HLLKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .HLLKernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"HLLKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .HLLKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

247
GPUSimulators/HLL2.py Normal file
View File

@ -0,0 +1,247 @@
# -*- coding: utf-8 -*-
"""
This python module implements the 2nd order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class HLL2 (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
theta=1.8,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height);
self.g = np.float32(g)
self.theta = np.float32(theta)
#Get kernels
# module = context.get_module("cuda/SWE2D_HLL2.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("HLL2Kernel")
# self.kernel.prepare("iifffffiiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_HLL2.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"HLL2Kernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .HLL2Kernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"HLL2Kernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
self.substepDimsplit(dt*0.5, step_number)
def substepDimsplit(self, dt, substep):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.theta),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .HLL2Kernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

View File

@ -0,0 +1,193 @@
# -*- coding: utf-8 -*-
"""
This python module implements helpers for IPython / Jupyter and CUDA
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import logging
import gc
from IPython.core import magic_arguments
from IPython.core.magic import line_magic, Magics, magics_class
import pycuda.driver as cuda
from GPUSimulators import Common, CudaContext
@magics_class
class MagicCudaContext(Magics):
@line_magic
@magic_arguments.magic_arguments()
@magic_arguments.argument(
'name', type=str, help='Name of context to create')
@magic_arguments.argument(
'--blocking', '-b', action="store_true", help='Enable blocking context')
@magic_arguments.argument(
'--no_cache', '-nc', action="store_true", help='Disable caching of kernels')
@magic_arguments.argument(
'--no_autotuning', '-na', action="store_true", help='Disable autotuning of kernels')
def cuda_context_handler(self, line):
args = magic_arguments.parse_argstring(self.cuda_context_handler, line)
self.logger = logging.getLogger(__name__)
self.logger.info("Registering %s in user workspace", args.name)
context_flags = None
if (args.blocking):
context_flags = cuda.ctx_flags.SCHED_BLOCKING_SYNC
if args.name in self.shell.user_ns.keys():
self.logger.debug("Context already registered! Ignoring")
return
else:
self.logger.debug("Creating context")
use_cache = False if args.no_cache else True
use_autotuning = False if args.no_autotuning else True
self.shell.user_ns[args.name] = CudaContext.CudaContext(context_flags=context_flags, use_cache=use_cache, autotuning=use_autotuning)
# this function will be called on exceptions in any cell
def custom_exc(shell, etype, evalue, tb, tb_offset=None):
self.logger.exception("Exception caught: Resetting to CUDA context %s", args.name)
while (cuda.Context.get_current() != None):
context = cuda.Context.get_current()
self.logger.info("Popping <%s>", str(context.handle))
cuda.Context.pop()
if args.name in self.shell.user_ns.keys():
self.logger.info("Pushing <%s>", str(self.shell.user_ns[args.name].cuda_context.handle))
self.shell.user_ns[args.name].cuda_context.push()
else:
self.logger.error("No CUDA context called %s found (something is wrong)", args.name)
self.logger.error("CUDA will not work now")
self.logger.debug("==================================================================")
# still show the error within the notebook, don't just swallow it
shell.showtraceback((etype, evalue, tb), tb_offset=tb_offset)
# this registers a custom exception handler for the whole current notebook
get_ipython().set_custom_exc((Exception,), custom_exc)
# Handle CUDA context when exiting python
import atexit
def exitfunc():
self.logger.info("Exitfunc: Resetting CUDA context stack")
while (cuda.Context.get_current() != None):
context = cuda.Context.get_current()
self.logger.info("`-> Popping <%s>", str(context.handle))
cuda.Context.pop()
self.logger.debug("==================================================================")
atexit.register(exitfunc)
@magics_class
class MagicLogger(Magics):
logger_initialized = False
@line_magic
@magic_arguments.magic_arguments()
@magic_arguments.argument(
'name', type=str, help='Name of context to create')
@magic_arguments.argument(
'--out', '-o', type=str, default='output.log', help='The filename to store the log to')
@magic_arguments.argument(
'--level', '-l', type=int, default=20, help='The level of logging to screen [0, 50]')
@magic_arguments.argument(
'--file_level', '-f', type=int, default=10, help='The level of logging to file [0, 50]')
def setup_logging(self, line):
if (self.logger_initialized):
logging.getLogger('GPUSimulators').info("Global logger already initialized!")
return;
else:
self.logger_initialized = True
args = magic_arguments.parse_argstring(self.setup_logging, line)
import sys
#Get root logger
logger = logging.getLogger('GPUSimulators')
logger.setLevel(min(args.level, args.file_level))
#Add log to screen
ch = logging.StreamHandler()
ch.setLevel(args.level)
logger.addHandler(ch)
logger.log(args.level, "Console logger using level %s", logging.getLevelName(args.level))
#Get the outfilename (try to evaluate if Python expression...)
try:
outfile = eval(args.out, self.shell.user_global_ns, self.shell.user_ns)
except:
outfile = args.out
#Add log to file
logger.log(args.level, "File logger using level %s to %s", logging.getLevelName(args.file_level), outfile)
fh = logging.FileHandler(outfile)
formatter = logging.Formatter('%(asctime)s:%(name)s:%(levelname)s: %(message)s')
fh.setFormatter(formatter)
fh.setLevel(args.file_level)
logger.addHandler(fh)
logger.info("Python version %s", sys.version)
self.shell.user_ns[args.name] = logger
@magics_class
class MagicMPI(Magics):
@line_magic
@magic_arguments.magic_arguments()
@magic_arguments.argument(
'name', type=str, help='Name of context to create')
@magic_arguments.argument(
'--num_engines', '-n', type=int, default=4, help='Number of engines to start')
def setup_mpi(self, line):
args = magic_arguments.parse_argstring(self.setup_mpi, line)
logger = logging.getLogger('GPUSimulators')
if args.name in self.shell.user_ns.keys():
logger.warning("MPI alreay set up, resetting")
self.shell.user_ns[args.name].shutdown()
self.shell.user_ns[args.name] = None
gc.collect()
self.shell.user_ns[args.name] = Common.IPEngine(args.num_engines)
# Register
ip = get_ipython()
ip.register_magics(MagicCudaContext)
ip.register_magics(MagicLogger)
ip.register_magics(MagicMPI)

252
GPUSimulators/KP07.py Normal file
View File

@ -0,0 +1,252 @@
# -*- coding: utf-8 -*-
"""
This python module implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class KP07 (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
theta=1.3,
cfl_scale=0.9,
order=2,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
order,
block_width, block_height);
self.g = np.float32(g)
self.theta = np.float32(theta)
self.order = np.int32(order)
#Get kernels
# module = context.get_module("cuda/SWE2D_KP07.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("KP07Kernel")
# self.kernel.prepare("iifffffiiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_KP07.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"KP07Kernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .KP07Kernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"KP07Kernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
self.substepRK(dt, step_number)
def substepRK(self, dt, substep):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.theta,
# Simulator.stepOrderToCodedInt(step=substep, order=self.order),
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.theta),
Simulator.stepOrderToCodedInt(step=substep, order=self.order),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .KP07Kernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
return max_dt*0.5**(self.order-1)

View File

@ -0,0 +1,251 @@
# -*- coding: utf-8 -*-
"""
This python module implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the dimentionally split KP07 scheme
"""
class KP07_dimsplit(Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
theta=1.3,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height)
self.gc_x = 2
self.gc_y = 2
self.g = np.float32(g)
self.theta = np.float32(theta)
#Get kernels
# module = context.get_module("cuda/SWE2D_KP07_dimsplit.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("KP07DimsplitKernel")
# self.kernel.prepare("iifffffiiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_KP07_dimsplit.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"KP07DimsplitKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .KP07DimsplitKernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"KP07DimsplitKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
self.gc_x, self.gc_y,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
self.gc_x, self.gc_y,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
self.substepDimsplit(dt*0.5, step_number)
def substepDimsplit(self, dt, substep):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.theta,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_float(self.theta),
ctypes.c_int(substep)
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .KP07DimsplitKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

238
GPUSimulators/LxF.py Normal file
View File

@ -0,0 +1,238 @@
# -*- coding: utf-8 -*-
"""
This python module implements the classical Lax-Friedrichs numerical
scheme for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Lax Friedrichs scheme
"""
class LxF (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
1,
block_width, block_height);
self.g = np.float32(g)
# Get kernels
# module = context.get_module("cuda/SWE2D_LxF.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("LxFKernel")
# self.kernel.prepare("iiffffiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_LxF.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"LxFKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .LxFKernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"LxFKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
1, 1,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .LxFKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

View File

@ -0,0 +1,535 @@
# -*- coding: utf-8 -*-
"""
This python module implements MPI simulator class
Copyright (C) 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import logging
from GPUSimulators import Simulator
import numpy as np
from mpi4py import MPI
import time
#import pycuda.driver as cuda
#import nvtx
from hip import hip, hiprtc
class MPIGrid(object):
"""
Class which represents an MPI grid of nodes. Facilitates easy communication between
neighboring nodes
"""
def __init__(self, comm, ndims=2):
self.logger = logging.getLogger(__name__)
assert ndims == 2, "Unsupported number of dimensions. Must be two at the moment"
assert comm.size >= 1, "Must have at least one node"
self.grid = MPIGrid.getGrid(comm.size, ndims)
self.comm = comm
self.logger.debug("Created MPI grid: {:}. Rank {:d} has coordinate {:}".format(
self.grid, self.comm.rank, self.getCoordinate()))
def getCoordinate(self, rank=None):
if (rank is None):
rank = self.comm.rank
i = (rank % self.grid[0])
j = (rank // self.grid[0])
return i, j
def getRank(self, i, j):
return j*self.grid[0] + i
def getEast(self):
i, j = self.getCoordinate(self.comm.rank)
i = (i+1) % self.grid[0]
return self.getRank(i, j)
def getWest(self):
i, j = self.getCoordinate(self.comm.rank)
i = (i+self.grid[0]-1) % self.grid[0]
return self.getRank(i, j)
def getNorth(self):
i, j = self.getCoordinate(self.comm.rank)
j = (j+1) % self.grid[1]
return self.getRank(i, j)
def getSouth(self):
i, j = self.getCoordinate(self.comm.rank)
j = (j+self.grid[1]-1) % self.grid[1]
return self.getRank(i, j)
def getGrid(num_nodes, num_dims):
assert(isinstance(num_nodes, int))
assert(isinstance(num_dims, int))
# Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors
# Original code by https://stackoverflow.com/users/3928385/ishamael
# Factorizes a number into n roughly equal factors
#Dictionary to remember already computed permutations
memo = {}
def dp(n, left): # returns tuple (cost, [factors])
"""
Recursively searches through all factorizations
"""
#Already tried: return existing result
if (n, left) in memo:
return memo[(n, left)]
#Spent all factors: return number itself
if left == 1:
return (n, [n])
#Find new factor
i = 2
best = n
bestTuple = [n]
while i * i < n:
#If factor found
if n % i == 0:
#Factorize remainder
rem = dp(n // i, left - 1)
#If new permutation better, save it
if rem[0] + i < best:
best = rem[0] + i
bestTuple = [i] + rem[1]
i += 1
#Store calculation
memo[(n, left)] = (best, bestTuple)
return memo[(n, left)]
grid = dp(num_nodes, num_dims)[1]
if (len(grid) < num_dims):
#Split problematic 4
if (4 in grid):
grid.remove(4)
grid.append(2)
grid.append(2)
#Pad with ones to guarantee num_dims
grid = grid + [1]*(num_dims - len(grid))
#Sort in descending order
grid = np.sort(grid)
grid = grid[::-1]
# XXX: We only use vertical (north-south) partitioning for now
grid[0] = 1
grid[1] = num_nodes
return grid
def gather(self, data, root=0):
out_data = None
if (self.comm.rank == root):
out_data = np.empty([self.comm.size] + list(data.shape), dtype=data.dtype)
self.comm.Gather(data, out_data, root)
return out_data
def getLocalRank(self):
"""
Returns the local rank on this node for this MPI process
"""
# This function has been adapted from
# https://github.com/SheffieldML/PyDeepGP/blob/master/deepgp/util/parallel.py
# by Zhenwen Dai released under BSD 3-Clause "New" or "Revised" License:
#
# Copyright (c) 2016, Zhenwen Dai
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of DGP nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#Get this ranks unique (physical) node name
node_name = MPI.Get_processor_name()
#Gather the list of all node names on all nodes
node_names = self.comm.allgather(node_name)
#Loop over all node names up until our rank
#and count how many duplicates of our nodename we find
local_rank = len([0 for name in node_names[:self.comm.rank] if name==node_name])
return local_rank
class MPISimulator(Simulator.BaseSimulator):
"""
Class which handles communication between simulators on different MPI nodes
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self, sim, grid):
self.profiling_data_mpi = { 'start': {}, 'end': {} }
self.profiling_data_mpi["start"]["t_mpi_halo_exchange"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] = 0
self.profiling_data_mpi["start"]["t_mpi_step"] = 0
self.profiling_data_mpi["end"]["t_mpi_step"] = 0
self.profiling_data_mpi["n_time_steps"] = 0
self.logger = logging.getLogger(__name__)
autotuner = sim.context.autotuner
sim.context.autotuner = None;
boundary_conditions = sim.getBoundaryConditions()
super().__init__(sim.context,
sim.nx, sim.ny,
sim.dx, sim.dy,
boundary_conditions,
sim.cfl_scale,
sim.num_substeps,
sim.block_size[0], sim.block_size[1])
sim.context.autotuner = autotuner
self.sim = sim
self.grid = grid
#Get neighbor node ids
self.east = grid.getEast()
self.west = grid.getWest()
self.north = grid.getNorth()
self.south = grid.getSouth()
#Get coordinate of this node
#and handle global boundary conditions
new_boundary_conditions = Simulator.BoundaryCondition({
'north': Simulator.BoundaryCondition.Type.Dirichlet,
'south': Simulator.BoundaryCondition.Type.Dirichlet,
'east': Simulator.BoundaryCondition.Type.Dirichlet,
'west': Simulator.BoundaryCondition.Type.Dirichlet
})
gi, gj = grid.getCoordinate()
#print("gi: " + str(gi) + ", gj: " + str(gj))
if (gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic):
self.west = None
new_boundary_conditions.west = boundary_conditions.west;
if (gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic):
self.south = None
new_boundary_conditions.south = boundary_conditions.south;
if (gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic):
self.east = None
new_boundary_conditions.east = boundary_conditions.east;
if (gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic):
self.north = None
new_boundary_conditions.north = boundary_conditions.north;
sim.setBoundaryConditions(new_boundary_conditions)
#Get number of variables
self.nvars = len(self.getOutput().gpu_variables)
#Shorthands for computing extents and sizes
gc_x = int(self.sim.getOutput()[0].x_halo)
gc_y = int(self.sim.getOutput()[0].y_halo)
nx = int(self.sim.nx)
ny = int(self.sim.ny)
#Set regions for ghost cells to read from
#These have the format [x0, y0, width, height]
self.read_e = np.array([ nx, 0, gc_x, ny + 2*gc_y])
self.read_w = np.array([gc_x, 0, gc_x, ny + 2*gc_y])
self.read_n = np.array([gc_x, ny, nx, gc_y])
self.read_s = np.array([gc_x, gc_y, nx, gc_y])
#Set regions for ghost cells to write to
self.write_e = self.read_e + np.array([gc_x, 0, 0, 0])
self.write_w = self.read_w - np.array([gc_x, 0, 0, 0])
self.write_n = self.read_n + np.array([0, gc_y, 0, 0])
self.write_s = self.read_s - np.array([0, gc_y, 0, 0])
#Allocate data for receiving
#Note that east and west also transfer ghost cells
#whilst north/south only transfer internal cells
#Reuses the width/height defined in the read-extets above
##self.in_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32) #np.empty((self.nvars, self.read_e[3], self.read_e[2]), dtype=np.float32)
##self.in_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32) #np.empty((self.nvars, self.read_w[3], self.read_w[2]), dtype=np.float32)
##self.in_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32) #np.empty((self.nvars, self.read_n[3], self.read_n[2]), dtype=np.float32)
##self.in_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32) #np.empty((self.nvars, self.read_s[3], self.read_s[2]), dtype=np.float32)
self.in_e = np.empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32)
num_bytes_e = self.in_e.size * self.in_e.itemsize
#hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs in the system, the memory can be accessed directly by the GPU device
#hipHostMallocDefault:Memory is mapped and portable (default allocation)
#hipHostMallocPortable: memory is explicitely portable across different devices
self.in_e = hip_check(hip.hipHostMalloc(num_bytes_e,hip.hipHostMallocPortable))
self.in_w = np.empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32)
num_bytes_w = self.in_w.size * self.in_w.itemsize
self.in_w = hip_check(hip.hipHostMalloc(num_bytes_w,hip.hipHostMallocPortable))
self.in_n = np.empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32)
num_bytes_n = self.in_n.size * self.in_n.itemsize
self.in_n = hip_check(hip.hipHostMalloc(num_bytes_n,hip.hipHostMallocPortable))
self.in_s = np.empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32)
num_bytes_s = self.in_s.size * self.in_s.itemsize
self.in_s = hip_check(hip.hipHostMalloc(num_bytes_s,hip.hipHostMallocPortable))
#Allocate data for sending
#self.out_e = cuda.pagelocked_empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32) #np.empty_like(self.in_e)
#self.out_w = cuda.pagelocked_empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32) #np.empty_like(self.in_w)
#self.out_n = cuda.pagelocked_empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32) #np.empty_like(self.in_n)
#self.out_s = cuda.pagelocked_empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32) #np.empty_like(self.in_s)
self.out_e = np.empty((int(self.nvars), int(self.read_e[3]), int(self.read_e[2])), dtype=np.float32)
num_bytes_e = self.out_e.size * self.out_e.itemsize
self.out_e = hip_check(hip.hipHostMalloc(num_bytes_e,hip.hipHostMallocPortable))
self.out_w = np.empty((int(self.nvars), int(self.read_w[3]), int(self.read_w[2])), dtype=np.float32)
num_bytes_w = self.out_w.size * self.out_w.itemsize
self.out_w = hip_check(hip.hipHostMalloc(num_bytes_w,hip.hipHostMallocPortable))
self.out_n = np.empty((int(self.nvars), int(self.read_n[3]), int(self.read_n[2])), dtype=np.float32)
num_bytes_n = self.out_n.size * self.out_n.itemsize
self.out_n = hip_check(hip.hipHostMalloc(num_bytes_n,hip.hipHostMallocPortable))
self.out_s = np.empty((int(self.nvars), int(self.read_s[3]), int(self.read_s[2])), dtype=np.float32)
num_bytes_s = self.out_s.size * self.out_s.itemsize
self.out_s = hip_check(hip.hipHostMalloc(num_bytes_s,hip.hipHostMallocPortable))
self.logger.debug("Simlator rank {:d} initialized on {:s}".format(self.grid.comm.rank, MPI.Get_processor_name()))
self.full_exchange()
sim.context.synchronize()
def substep(self, dt, step_number):
#nvtx.mark("substep start", color="yellow")
self.profiling_data_mpi["start"]["t_mpi_step"] += time.time()
#nvtx.mark("substep external", color="blue")
self.sim.substep(dt, step_number, external=True, internal=False) # only "internal ghost cells"
#nvtx.mark("substep internal", color="red")
self.sim.substep(dt, step_number, internal=True, external=False) # "internal ghost cells" excluded
#nvtx.mark("substep full", color="blue")
#self.sim.substep(dt, step_number, external=True, internal=True)
self.sim.swapBuffers()
self.profiling_data_mpi["end"]["t_mpi_step"] += time.time()
#nvtx.mark("exchange", color="blue")
self.full_exchange()
#nvtx.mark("sync start", color="blue")
#self.sim.stream.synchronize()
#self.sim.internal_stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sim.stream))
hip_check(hip.hipStreamSynchronize(self.sim.internal_stream))
#nvtx.mark("sync end", color="blue")
self.profiling_data_mpi["n_time_steps"] += 1
def getOutput(self):
return self.sim.getOutput()
def synchronize(self):
self.sim.synchronize()
def check(self):
return self.sim.check()
def computeDt(self):
local_dt = np.array([np.float32(self.sim.computeDt())]);
global_dt = np.empty(1, dtype=np.float32)
self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN)
self.logger.debug("Local dt: {:f}, global dt: {:f}".format(local_dt[0], global_dt[0]))
return global_dt[0]
def getExtent(self):
"""
Function which returns the extent of node with rank
rank in the grid
"""
width = self.sim.nx*self.sim.dx
height = self.sim.ny*self.sim.dy
i, j = self.grid.getCoordinate()
x0 = i * width
y0 = j * height
x1 = x0 + width
y1 = y0 + height
return [x0, x1, y0, y1]
def full_exchange(self):
####
# First transfer internal cells north-south
####
#Download from the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time()
if self.north is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k,:,:], asynch=True, extent=self.read_n)
if self.south is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k,:,:], asynch=True, extent=self.read_s)
#self.sim.stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sim.stream))
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time()
#Send/receive to north/south neighbours
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
comm_send = []
comm_recv = []
if self.north is not None:
comm_send += [self.grid.comm.Isend(self.out_n, dest=self.north, tag=4*self.nt + 0)]
comm_recv += [self.grid.comm.Irecv(self.in_n, source=self.north, tag=4*self.nt + 1)]
if self.south is not None:
comm_send += [self.grid.comm.Isend(self.out_s, dest=self.south, tag=4*self.nt + 1)]
comm_recv += [self.grid.comm.Irecv(self.in_s, source=self.south, tag=4*self.nt + 0)]
#Wait for incoming transfers to complete
for comm in comm_recv:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
#Upload to the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time()
if self.north is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_n[k,:,:], extent=self.write_n)
if self.south is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_s[k,:,:], extent=self.write_s)
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time()
#Wait for sending to complete
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
for comm in comm_send:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
####
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
####
#Download from the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time()
if self.east is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k,:,:], asynch=True, extent=self.read_e)
if self.west is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k,:,:], asynch=True, extent=self.read_w)
#self.sim.stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sim.stream))
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time()
#Send/receive to east/west neighbours
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
comm_send = []
comm_recv = []
if self.east is not None:
comm_send += [self.grid.comm.Isend(self.out_e, dest=self.east, tag=4*self.nt + 2)]
comm_recv += [self.grid.comm.Irecv(self.in_e, source=self.east, tag=4*self.nt + 3)]
if self.west is not None:
comm_send += [self.grid.comm.Isend(self.out_w, dest=self.west, tag=4*self.nt + 3)]
comm_recv += [self.grid.comm.Irecv(self.in_w, source=self.west, tag=4*self.nt + 2)]
#Wait for incoming transfers to complete
for comm in comm_recv:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
#Upload to the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time()
if self.east is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_e[k,:,:], extent=self.write_e)
if self.west is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_w[k,:,:], extent=self.write_w)
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time()
#Wait for sending to complete
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
for comm in comm_send:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()

View File

@ -0,0 +1,266 @@
# -*- coding: utf-8 -*-
"""
This python module implements SHMEM simulator group class
Copyright (C) 2020 Norwegian Meteorological Institute
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import logging
from GPUSimulators import Simulator, CudaContext
import numpy as np
#import pycuda.driver as cuda
from hip import hip, hiprtc
import time
class SHMEMSimulator(Simulator.BaseSimulator):
"""
Class which handles communication and synchronization between simulators in different
contexts (presumably on different GPUs)
"""
def __init__(self, sims, grid):
self.logger = logging.getLogger(__name__)
assert(len(sims) > 1)
self.sims = sims
# XXX: This is not what was intended. Do we need extra wrapper class SHMEMSimulator?
# See also getOutput() and check().
#
# SHMEMSimulatorGroup would then not have any superclass, but manage a collection of
# SHMEMSimulators that have BaseSimulator as a superclass.
#
# This would also eliminate the need for all the array bookkeeping in this class.
autotuner = sims[0].context.autotuner
sims[0].context.autotuner = None
boundary_conditions = sims[0].getBoundaryConditions()
super().__init__(sims[0].context,
sims[0].nx, sims[0].ny,
sims[0].dx, sims[0].dy,
boundary_conditions,
sims[0].cfl_scale,
sims[0].num_substeps,
sims[0].block_size[0], sims[0].block_size[1])
sims[0].context.autotuner = autotuner
self.sims = sims
self.grid = grid
self.east = [None] * len(self.sims)
self.west = [None] * len(self.sims)
self.north = [None] * len(self.sims)
self.south = [None] * len(self.sims)
self.nvars = [None] * len(self.sims)
self.read_e = [None] * len(self.sims)
self.read_w = [None] * len(self.sims)
self.read_n = [None] * len(self.sims)
self.read_s = [None] * len(self.sims)
self.write_e = [None] * len(self.sims)
self.write_w = [None] * len(self.sims)
self.write_n = [None] * len(self.sims)
self.write_s = [None] * len(self.sims)
self.e = [None] * len(self.sims)
self.w = [None] * len(self.sims)
self.n = [None] * len(self.sims)
self.s = [None] * len(self.sims)
for i, sim in enumerate(self.sims):
#Get neighbor subdomain ids
self.east[i] = grid.getEast(i)
self.west[i] = grid.getWest(i)
self.north[i] = grid.getNorth(i)
self.south[i] = grid.getSouth(i)
#Get coordinate of this subdomain
#and handle global boundary conditions
new_boundary_conditions = Simulator.BoundaryCondition({
'north': Simulator.BoundaryCondition.Type.Dirichlet,
'south': Simulator.BoundaryCondition.Type.Dirichlet,
'east': Simulator.BoundaryCondition.Type.Dirichlet,
'west': Simulator.BoundaryCondition.Type.Dirichlet
})
gi, gj = grid.getCoordinate(i)
if (gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic):
self.west = None
new_boundary_conditions.west = boundary_conditions.west;
if (gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic):
self.south = None
new_boundary_conditions.south = boundary_conditions.south;
if (gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic):
self.east = None
new_boundary_conditions.east = boundary_conditions.east;
if (gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic):
self.north = None
new_boundary_conditions.north = boundary_conditions.north;
sim.setBoundaryConditions(new_boundary_conditions)
#Get number of variables
self.nvars[i] = len(sim.getOutput().gpu_variables)
#Shorthands for computing extents and sizes
gc_x = int(sim.getOutput()[0].x_halo)
gc_y = int(sim.getOutput()[0].y_halo)
nx = int(sim.nx)
ny = int(sim.ny)
#Set regions for ghost cells to read from
#These have the format [x0, y0, width, height]
self.read_e[i] = np.array([ nx, 0, gc_x, ny + 2*gc_y])
self.read_w[i] = np.array([gc_x, 0, gc_x, ny + 2*gc_y])
self.read_n[i] = np.array([gc_x, ny, nx, gc_y])
self.read_s[i] = np.array([gc_x, gc_y, nx, gc_y])
#Set regions for ghost cells to write to
self.write_e[i] = self.read_e[i] + np.array([gc_x, 0, 0, 0])
self.write_w[i] = self.read_w[i] - np.array([gc_x, 0, 0, 0])
self.write_n[i] = self.read_n[i] + np.array([0, gc_y, 0, 0])
self.write_s[i] = self.read_s[i] - np.array([0, gc_y, 0, 0])
#Allocate host data
#Note that east and west also transfer ghost cells
#whilst north/south only transfer internal cells
#Reuses the width/height defined in the read-extets above
self.e[i] = np.empty((self.nvars[i], self.read_e[i][3], self.read_e[i][2]), dtype=np.float32)
self.w[i] = np.empty((self.nvars[i], self.read_w[i][3], self.read_w[i][2]), dtype=np.float32)
self.n[i] = np.empty((self.nvars[i], self.read_n[i][3], self.read_n[i][2]), dtype=np.float32)
self.s[i] = np.empty((self.nvars[i], self.read_s[i][3], self.read_s[i][2]), dtype=np.float32)
self.logger.debug("Initialized {:d} subdomains".format(len(self.sims)))
def substep(self, dt, step_number):
self.exchange()
for i, sim in enumerate(self.sims):
sim.substep(dt, step_number)
def getOutput(self):
# XXX: Does not return what we would expect.
# Returns first subdomain, but we want the whole domain.
return self.sims[0].getOutput()
def synchronize(self):
for sim in self.sims:
sim.synchronize()
def check(self):
# XXX: Does not return what we would expect.
# Checks only first subdomain, but we want to check the whole domain.
return self.sims[0].check()
def computeDt(self):
global_dt = float("inf")
for sim in self.sims:
sim.context.synchronize()
for sim in self.sims:
local_dt = sim.computeDt()
if local_dt < global_dt:
global_dt = local_dt
self.logger.debug("Local dt: {:f}".format(local_dt))
self.logger.debug("Global dt: {:f}".format(global_dt))
return global_dt
def getExtent(self, index=0):
"""
Function which returns the extent of the subdomain with index
index in the grid
"""
width = self.sims[index].nx*self.sims[index].dx
height = self.sims[index].ny*self.sims[index].dy
i, j = self.grid.getCoordinate(index)
x0 = i * width
y0 = j * height
x1 = x0 + width
y1 = y0 + height
return [x0, x1, y0, y1]
def exchange(self):
####
# First transfer internal cells north-south
####
for i in range(len(self.sims)):
self.ns_download(i)
for i in range(len(self.sims)):
self.ns_upload(i)
####
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
####
for i in range(len(self.sims)):
self.ew_download(i)
for i in range(len(self.sims)):
self.ew_upload(i)
def ns_download(self, i):
#Download from the GPU
if self.north[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the north)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.n[i][k,:,:], extent=self.read_n[i])
if self.south[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the south)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.s[i][k,:,:], extent=self.read_s[i])
#self.sims[i].stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sims[i].stream))
def ns_upload(self, i):
#Upload to the GPU
if self.north[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.s[self.north[i]][k,:,:], extent=self.write_n[i])
if self.south[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.n[self.south[i]][k,:,:], extent=self.write_s[i])
def ew_download(self, i):
#Download from the GPU
if self.east[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the east)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.e[i][k,:,:], extent=self.read_e[i])
if self.west[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the west)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.w[i][k,:,:], extent=self.read_w[i])
#self.sims[i].stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sims[i].stream))
def ew_upload(self, i):
#Upload to the GPU
if self.east[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.w[self.east[i]][k,:,:], extent=self.write_e[i])
#test_east = np.ones_like(self.e[self.east[i]][k,:,:])
#self.sims[i].u0[k].upload(self.sims[i].stream, test_east, extent=self.write_e[i])
if self.west[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.e[self.west[i]][k,:,:], extent=self.write_w[i])
#test_west = np.ones_like(self.e[self.west[i]][k,:,:])
#self.sims[i].u0[k].upload(self.sims[i].stream, test_west, extent=self.write_w[i])

View File

@ -0,0 +1,413 @@
# -*- coding: utf-8 -*-
"""
This python module implements SHMEM simulator group class
Copyright (C) 2020 Norwegian Meteorological Institute
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import logging
from GPUSimulators import Simulator, CudaContext
import numpy as np
#import pycuda.driver as cuda
from hip import hip, hiprtc
import time
class SHMEMGrid(object):
"""
Class which represents an SHMEM grid of GPUs. Facilitates easy communication between
neighboring subdomains in the grid. Contains one CUDA context per subdomain.
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self, ngpus=None, ndims=2):
self.logger = logging.getLogger(__name__)
#cuda.init(flags=0)
self.logger.info("Initializing HIP")
#num_cuda_devices = cuda.Device.count()
num_cuda_devices = hip_check(hip.hipGetDeviceCount())
if ngpus is None:
ngpus = num_cuda_devices
# XXX: disabled for testing on single-GPU system
#assert ngpus <= num_cuda_devices, "Trying to allocate more GPUs than are available in the system."
#assert ngpus >= 2, "Must have at least two GPUs available to run multi-GPU simulations."
assert ndims == 2, "Unsupported number of dimensions. Must be two at the moment"
self.ngpus = ngpus
self.ndims = ndims
self.grid = SHMEMGrid.getGrid(self.ngpus, self.ndims)
self.logger.debug("Created {:}-dimensional SHMEM grid, using {:} GPUs".format(
self.ndims, self.ngpus))
# XXX: Is this a natural place to store the contexts? Consider moving contexts out of this
# class, into notebook / calling script (shmemTesting.py)
self.cuda_contexts = []
for i in range(self.ngpus):
# XXX: disabled for testing on single-GPU system
#self.cuda_contexts.append(CudaContext.CudaContext(device=i, autotuning=False))
self.cuda_contexts.append(CudaContext.CudaContext(device=0, autotuning=False))
def getCoordinate(self, index):
i = (index % self.grid[0])
j = (index // self.grid[0])
return i, j
def getIndex(self, i, j):
return j*self.grid[0] + i
def getEast(self, index):
i, j = self.getCoordinate(index)
i = (i+1) % self.grid[0]
return self.getIndex(i, j)
def getWest(self, index):
i, j = self.getCoordinate(index)
i = (i+self.grid[0]-1) % self.grid[0]
return self.getIndex(i, j)
def getNorth(self, index):
i, j = self.getCoordinate(index)
j = (j+1) % self.grid[1]
return self.getIndex(i, j)
def getSouth(self, index):
i, j = self.getCoordinate(index)
j = (j+self.grid[1]-1) % self.grid[1]
return self.getIndex(i, j)
def getGrid(num_gpus, num_dims):
assert(isinstance(num_gpus, int))
assert(isinstance(num_dims, int))
# Adapted from https://stackoverflow.com/questions/28057307/factoring-a-number-into-roughly-equal-factors
# Original code by https://stackoverflow.com/users/3928385/ishamael
# Factorizes a number into n roughly equal factors
#Dictionary to remember already computed permutations
memo = {}
def dp(n, left): # returns tuple (cost, [factors])
"""
Recursively searches through all factorizations
"""
#Already tried: return existing result
if (n, left) in memo:
return memo[(n, left)]
#Spent all factors: return number itself
if left == 1:
return (n, [n])
#Find new factor
i = 2
best = n
bestTuple = [n]
while i * i < n:
#If factor found
if n % i == 0:
#Factorize remainder
rem = dp(n // i, left - 1)
#If new permutation better, save it
if rem[0] + i < best:
best = rem[0] + i
bestTuple = [i] + rem[1]
i += 1
#Store calculation
memo[(n, left)] = (best, bestTuple)
return memo[(n, left)]
grid = dp(num_gpus, num_dims)[1]
if (len(grid) < num_dims):
#Split problematic 4
if (4 in grid):
grid.remove(4)
grid.append(2)
grid.append(2)
#Pad with ones to guarantee num_dims
grid = grid + [1]*(num_dims - len(grid))
#Sort in descending order
grid = np.sort(grid)
grid = grid[::-1]
return grid
class SHMEMSimulatorGroup(object):
"""
Class which handles communication and synchronization between simulators in different
contexts (typically on different GPUs)
"""
def __init__(self, sims, grid):
self.logger = logging.getLogger(__name__)
assert(len(sims) > 1)
self.sims = sims
# XXX: This is not what was intended. Do we need extra wrapper class SHMEMSimulator?
# See also getOutput() and check().
#
# SHMEMSimulatorGroup would then not have any superclass, but manage a collection of
# SHMEMSimulators that have BaseSimulator as a superclass.
#
# This would also eliminate the need for all the array bookkeeping in this class.
#
CONT HERE! Model shmemTesting after mpiTesting and divide existing functionality between SHMEMSimulatorGroup and SHMEMSimulator
autotuner = sims[0].context.autotuner
sims[0].context.autotuner = None
boundary_conditions = sims[0].getBoundaryConditions()
super().__init__(sims[0].context,
sims[0].nx, sims[0].ny,
sims[0].dx, sims[0].dy,
boundary_conditions,
sims[0].cfl_scale,
sims[0].num_substeps,
sims[0].block_size[0], sims[0].block_size[1])
sims[0].context.autotuner = autotuner
self.sims = sims
self.grid = grid
self.east = [None] * len(self.sims)
self.west = [None] * len(self.sims)
self.north = [None] * len(self.sims)
self.south = [None] * len(self.sims)
self.nvars = [None] * len(self.sims)
self.read_e = [None] * len(self.sims)
self.read_w = [None] * len(self.sims)
self.read_n = [None] * len(self.sims)
self.read_s = [None] * len(self.sims)
self.write_e = [None] * len(self.sims)
self.write_w = [None] * len(self.sims)
self.write_n = [None] * len(self.sims)
self.write_s = [None] * len(self.sims)
self.e = [None] * len(self.sims)
self.w = [None] * len(self.sims)
self.n = [None] * len(self.sims)
self.s = [None] * len(self.sims)
for i, sim in enumerate(self.sims):
#Get neighbor subdomain ids
self.east[i] = grid.getEast(i)
self.west[i] = grid.getWest(i)
self.north[i] = grid.getNorth(i)
self.south[i] = grid.getSouth(i)
#Get coordinate of this subdomain
#and handle global boundary conditions
new_boundary_conditions = Simulator.BoundaryCondition({
'north': Simulator.BoundaryCondition.Type.Dirichlet,
'south': Simulator.BoundaryCondition.Type.Dirichlet,
'east': Simulator.BoundaryCondition.Type.Dirichlet,
'west': Simulator.BoundaryCondition.Type.Dirichlet
})
gi, gj = grid.getCoordinate(i)
if (gi == 0 and boundary_conditions.west != Simulator.BoundaryCondition.Type.Periodic):
self.west = None
new_boundary_conditions.west = boundary_conditions.west;
if (gj == 0 and boundary_conditions.south != Simulator.BoundaryCondition.Type.Periodic):
self.south = None
new_boundary_conditions.south = boundary_conditions.south;
if (gi == grid.grid[0]-1 and boundary_conditions.east != Simulator.BoundaryCondition.Type.Periodic):
self.east = None
new_boundary_conditions.east = boundary_conditions.east;
if (gj == grid.grid[1]-1 and boundary_conditions.north != Simulator.BoundaryCondition.Type.Periodic):
self.north = None
new_boundary_conditions.north = boundary_conditions.north;
sim.setBoundaryConditions(new_boundary_conditions)
#Get number of variables
self.nvars[i] = len(sim.getOutput().gpu_variables)
#Shorthands for computing extents and sizes
gc_x = int(sim.getOutput()[0].x_halo)
gc_y = int(sim.getOutput()[0].y_halo)
nx = int(sim.nx)
ny = int(sim.ny)
#Set regions for ghost cells to read from
#These have the format [x0, y0, width, height]
self.read_e[i] = np.array([ nx, 0, gc_x, ny + 2*gc_y])
self.read_w[i] = np.array([gc_x, 0, gc_x, ny + 2*gc_y])
self.read_n[i] = np.array([gc_x, ny, nx, gc_y])
self.read_s[i] = np.array([gc_x, gc_y, nx, gc_y])
#Set regions for ghost cells to write to
self.write_e[i] = self.read_e[i] + np.array([gc_x, 0, 0, 0])
self.write_w[i] = self.read_w[i] - np.array([gc_x, 0, 0, 0])
self.write_n[i] = self.read_n[i] + np.array([0, gc_y, 0, 0])
self.write_s[i] = self.read_s[i] - np.array([0, gc_y, 0, 0])
#Allocate host data
#Note that east and west also transfer ghost cells
#whilst north/south only transfer internal cells
#Reuses the width/height defined in the read-extets above
self.e[i] = np.empty((self.nvars[i], self.read_e[i][3], self.read_e[i][2]), dtype=np.float32)
self.w[i] = np.empty((self.nvars[i], self.read_w[i][3], self.read_w[i][2]), dtype=np.float32)
self.n[i] = np.empty((self.nvars[i], self.read_n[i][3], self.read_n[i][2]), dtype=np.float32)
self.s[i] = np.empty((self.nvars[i], self.read_s[i][3], self.read_s[i][2]), dtype=np.float32)
self.logger.debug("Initialized {:d} subdomains".format(len(self.sims)))
def substep(self, dt, step_number):
self.exchange()
for i, sim in enumerate(self.sims):
sim.substep(dt, step_number)
def getOutput(self):
# XXX: Does not return what we would expect.
# Returns first subdomain, but we want the whole domain.
return self.sims[0].getOutput()
def synchronize(self):
for sim in self.sims:
sim.synchronize()
def check(self):
# XXX: Does not return what we would expect.
# Checks only first subdomain, but we want to check the whole domain.
return self.sims[0].check()
def computeDt(self):
global_dt = float("inf")
for sim in self.sims:
sim.context.synchronize()
for sim in self.sims:
local_dt = sim.computeDt()
if local_dt < global_dt:
global_dt = local_dt
self.logger.debug("Local dt: {:f}".format(local_dt))
self.logger.debug("Global dt: {:f}".format(global_dt))
return global_dt
def getExtent(self, index=0):
"""
Function which returns the extent of the subdomain with index
index in the grid
"""
width = self.sims[index].nx*self.sims[index].dx
height = self.sims[index].ny*self.sims[index].dy
i, j = self.grid.getCoordinate(index)
x0 = i * width
y0 = j * height
x1 = x0 + width
y1 = y0 + height
return [x0, x1, y0, y1]
def exchange(self):
####
# First transfer internal cells north-south
####
for i in range(len(self.sims)):
self.ns_download(i)
for i in range(len(self.sims)):
self.ns_upload(i)
####
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
####
for i in range(len(self.sims)):
self.ew_download(i)
for i in range(len(self.sims)):
self.ew_upload(i)
def ns_download(self, i):
#Download from the GPU
if self.north[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the north)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.n[i][k,:,:], extent=self.read_n[i])
if self.south[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the south)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.s[i][k,:,:], extent=self.read_s[i])
#self.sims[i].stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sims[i].stream))
def ns_upload(self, i):
#Upload to the GPU
if self.north[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.s[self.north[i]][k,:,:], extent=self.write_n[i])
if self.south[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.n[self.south[i]][k,:,:], extent=self.write_s[i])
def ew_download(self, i):
#Download from the GPU
if self.east[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the east)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.e[i][k,:,:], extent=self.read_e[i])
if self.west[i] is not None:
for k in range(self.nvars[i]):
# XXX: Unnecessary global sync (only need to sync with neighboring subdomain to the west)
self.sims[i].u0[k].download(self.sims[i].stream, cpu_data=self.w[i][k,:,:], extent=self.read_w[i])
#self.sims[i].stream.synchronize()
hip_check(hip.hipStreamSynchronize(self.sims[i].stream))
def ew_upload(self, i):
#Upload to the GPU
if self.east[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.w[self.east[i]][k,:,:], extent=self.write_e[i])
#test_east = np.ones_like(self.e[self.east[i]][k,:,:])
#self.sims[i].u0[k].upload(self.sims[i].stream, test_east, extent=self.write_e[i])
if self.west[i] is not None:
for k in range(self.nvars[i]):
self.sims[i].u0[k].upload(self.sims[i].stream, self.e[self.west[i]][k,:,:], extent=self.write_w[i])
#test_west = np.ones_like(self.e[self.west[i]][k,:,:])
#self.sims[i].u0[k].upload(self.sims[i].stream, test_west, extent=self.write_w[i])

286
GPUSimulators/Simulator.py Normal file
View File

@ -0,0 +1,286 @@
# -*- coding: utf-8 -*-
"""
This python module implements the classical Lax-Friedrichs numerical
scheme for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
import numpy as np
import logging
from enum import IntEnum
#import pycuda.compiler as cuda_compiler
#import pycuda.gpuarray
#import pycuda.driver as cuda
from hip import hip, hiprtc
from GPUSimulators import Common
class BoundaryCondition(object):
"""
Class for holding boundary conditions for global boundaries
"""
class Type(IntEnum):
"""
Enum that describes the different types of boundary conditions
WARNING: MUST MATCH THAT OF common.h IN CUDA
"""
Dirichlet = 0,
Neumann = 1,
Periodic = 2,
Reflective = 3
def __init__(self, types={
'north': Type.Reflective,
'south': Type.Reflective,
'east': Type.Reflective,
'west': Type.Reflective
}):
"""
Constructor
"""
self.north = types['north']
self.south = types['south']
self.east = types['east']
self.west = types['west']
if (self.north == BoundaryCondition.Type.Neumann \
or self.south == BoundaryCondition.Type.Neumann \
or self.east == BoundaryCondition.Type.Neumann \
or self.west == BoundaryCondition.Type.Neumann):
raise(NotImplementedError("Neumann boundary condition not supported"))
def __str__(self):
return '[north={:s}, south={:s}, east={:s}, west={:s}]'.format(str(self.north), str(self.south), str(self.east), str(self.west))
def asCodedInt(self):
"""
Helper function which packs four boundary conditions into one integer
"""
bc = 0
bc = bc | (self.north & 0x0000000F) << 24
bc = bc | (self.south & 0x0000000F) << 16
bc = bc | (self.east & 0x0000000F) << 8
bc = bc | (self.west & 0x0000000F) << 0
#for t in types:
# print("{0:s}, {1:d}, {1:032b}, {1:08b}".format(t, types[t]))
#print("bc: {0:032b}".format(bc))
return np.int32(bc)
def getTypes(bc):
types = {}
types['north'] = BoundaryCondition.Type((bc >> 24) & 0x0000000F)
types['south'] = BoundaryCondition.Type((bc >> 16) & 0x0000000F)
types['east'] = BoundaryCondition.Type((bc >> 8) & 0x0000000F)
types['west'] = BoundaryCondition.Type((bc >> 0) & 0x0000000F)
return types
class BaseSimulator(object):
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
return result
def __init__(self,
context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
num_substeps,
block_width, block_height):
"""
Initialization routine
context: GPU context to use
kernel_wrapper: wrapper function of GPU kernel
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
cfl_scale: Courant number
num_substeps: Number of substeps to perform for a full step
"""
#Get logger
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
#GPU kernel
self.context = context
self.nx = np.int32(nx)
self.ny = np.int32(ny)
self.dx = np.float32(dx)
self.dy = np.float32(dy)
self.setBoundaryConditions(boundary_conditions)
self.cfl_scale = cfl_scale
self.num_substeps = num_substeps
#Handle autotuning block size
if (self.context.autotuner):
peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
block_width = int(peak_configuration["block_width"])
block_height = int(peak_configuration["block_height"])
self.logger.debug("Used autotuning to get block size [%d x %d]", block_width, block_height)
#Compute kernel launch parameters
self.block_size = (block_width, block_height, 1)
self.grid_size = (
int(np.ceil(self.nx / float(self.block_size[0]))),
int(np.ceil(self.ny / float(self.block_size[1])))
)
#Create a CUDA stream
#self.stream = cuda.Stream()
#self.internal_stream = cuda.Stream()
self.stream = hip_check(hip.hipStreamCreate())
self.internal_stream = hip_check(hip.hipStreamCreate())
#Keep track of simulation time and number of timesteps
self.t = 0.0
self.nt = 0
def __str__(self):
return "{:s} [{:d}x{:d}]".format(self.__class__.__name__, self.nx, self.ny)
def simulate(self, t, dt=None):
"""
Function which simulates t_end seconds using the step function
Requires that the step() function is implemented in the subclasses
"""
printer = Common.ProgressPrinter(t)
t_start = self.simTime()
t_end = t_start + t
update_dt = True
if (dt is not None):
update_dt = False
self.dt = dt
while(self.simTime() < t_end):
# Update dt every 100 timesteps and cross your fingers it works
# for the next 100
if (update_dt and (self.simSteps() % 100 == 0)):
self.dt = self.computeDt()*self.cfl_scale
# Compute timestep for "this" iteration (i.e., shorten last timestep)
current_dt = np.float32(min(self.dt, t_end-self.simTime()))
# Stop if end reached (should not happen)
if (current_dt <= 0.0):
self.logger.warning("Timestep size {:d} is less than or equal to zero!".format(self.simSteps()))
break
# Step forward in time
self.step(current_dt)
#Print info
print_string = printer.getPrintString(self.simTime() - t_start)
if (print_string):
self.logger.info("%s: %s", self, print_string)
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()),)
raise
def step(self, dt):
"""
Function which performs one single timestep of size dt
"""
for i in range(self.num_substeps):
self.substep(dt, i)
self.t += dt
self.nt += 1
def download(self, variables=None):
return self.getOutput().download(self.stream, variables)
def synchronize(self):
#self.stream.synchronize()
#Synchronize the stream to ensure operations in the stream is complete
hip_check(hip.hipStreamSynchronize(self.stream))
def simTime(self):
return self.t
def simSteps(self):
return self.nt
def getExtent(self):
return [0, 0, self.nx*self.dx, self.ny*self.dy]
def setBoundaryConditions(self, boundary_conditions):
self.logger.debug("Boundary conditions set to {:s}".format(str(boundary_conditions)))
self.boundary_conditions = boundary_conditions.asCodedInt()
def getBoundaryConditions(self):
return BoundaryCondition(BoundaryCondition.getTypes(self.boundary_conditions))
def substep(self, dt, step_number):
"""
Function which performs one single substep with stepsize dt
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def getOutput(self):
raise(NotImplementedError("Needs to be implemented in subclass"))
def check(self):
self.logger.warning("check() is not implemented - please implement")
#raise(NotImplementedError("Needs to be implemented in subclass"))
def computeDt(self):
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepOrderToCodedInt(step, order):
"""
Helper function which packs the step and order into a single integer
"""
step_order = (step << 16) | (order & 0x0000ffff)
#print("Step: {0:032b}".format(step))
#print("Order: {0:032b}".format(order))
#print("Mix: {0:032b}".format(step_order))
return np.int32(step_order)

241
GPUSimulators/WAF.py Normal file
View File

@ -0,0 +1,241 @@
# -*- coding: utf-8 -*-
"""
This python module implements the Weighted average flux (WAF) described in
E. Toro, Shock-Capturing methods for free-surface shallow flows, 2001
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
from GPUSimulators import Simulator, Common
from GPUSimulators.Simulator import BaseSimulator, BoundaryCondition
import numpy as np
import ctypes
#from pycuda import gpuarray
from hip import hip,hiprtc
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class WAF (Simulator.BaseSimulator):
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
"""
def hip_check(call_result):
err = call_result[0]
result = call_result[1:]
if len(result) == 1:
result = result[0]
if isinstance(err, hip.hipError_t) and err != hip.hipError_t.hipSuccess:
raise RuntimeError(str(err))
elif (
isinstance(err, hiprtc.hiprtcResult)
and err != hiprtc.hiprtcResult.HIPRTC_SUCCESS
):
raise RuntimeError(str(err))
return result
def __init__(self,
context,
h0, hu0, hv0,
nx, ny,
dx, dy,
g,
cfl_scale=0.9,
boundary_conditions=BoundaryCondition(),
block_width=16, block_height=16):
# Call super constructor
super().__init__(context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
2,
block_width, block_height);
self.g = np.float32(g)
#Get kernels
# module = context.get_module("cuda/SWE2D_WAF.cu",
# defines={
# 'BLOCK_WIDTH': self.block_size[0],
# 'BLOCK_HEIGHT': self.block_size[1]
# },
# compile_args={
# 'no_extern_c': True,
# 'options': ["--use_fast_math"],
# },
# jit_compile_args={})
# self.kernel = module.get_function("WAFKernel")
# self.kernel.prepare("iiffffiiPiPiPiPiPiPiP")
kernel_file_path = os.path.abspath(os.path.join('cuda', 'SWE2D_WAF.cu.hip'))
with open(kernel_file_path, 'r') as file:
kernel_source = file.read()
prog = hip_check(hiprtc.hiprtcCreateProgram(kernel_source.encode(), b"WAFKernel", 0, [], []))
props = hip.hipDeviceProp_t()
hip_check(hip.hipGetDeviceProperties(props,0))
arch = props.gcnArchName
print(f"Compiling kernel .WAFKernel. for {arch}")
cflags = [b"--offload-arch="+arch]
err, = hiprtc.hiprtcCompileProgram(prog, len(cflags), cflags)
if err != hiprtc.hiprtcResult.HIPRTC_SUCCESS:
log_size = hip_check(hiprtc.hiprtcGetProgramLogSize(prog))
log = bytearray(log_size)
hip_check(hiprtc.hiprtcGetProgramLog(prog, log))
raise RuntimeError(log.decode())
code_size = hip_check(hiprtc.hiprtcGetCodeSize(prog))
code = bytearray(code_size)
hip_check(hiprtc.hiprtcGetCode(prog, code))
module = hip_check(hip.hipModuleLoadData(code))
kernel = hip_check(hip.hipModuleGetFunction(module, b"WAFKernel"))
#Create data by uploading to device
self.u0 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[h0, hu0, hv0])
self.u1 = Common.ArakawaA2D(self.stream,
nx, ny,
2, 2,
[None, None, None])
#self.cfl_data = gpuarray.GPUArray(self.grid_size, dtype=np.float32)
data_h = np.empty(self.grid_size, dtype=np.float32)
num_bytes = data_h.size * data_h.itemsize
self.cfl_data = hip_check(hip.hipMalloc(num_bytes)).configure(
typestr="float32",shape=self.grid_size)
dt_x = np.min(self.dx / (np.abs(hu0/h0) + np.sqrt(g*h0)))
dt_y = np.min(self.dy / (np.abs(hv0/h0) + np.sqrt(g*h0)))
dt = min(dt_x, dt_y)
self.cfl_data.fill(dt, stream=self.stream)
def substep(self, dt, step_number):
self.substepDimsplit(dt*0.5, step_number)
def substepDimsplit(self, dt, substep):
# self.kernel.prepared_async_call(self.grid_size, self.block_size, self.stream,
# self.nx, self.ny,
# self.dx, self.dy, dt,
# self.g,
# substep,
# self.boundary_conditions,
# self.u0[0].data.gpudata, self.u0[0].data.strides[0],
# self.u0[1].data.gpudata, self.u0[1].data.strides[0],
# self.u0[2].data.gpudata, self.u0[2].data.strides[0],
# self.u1[0].data.gpudata, self.u1[0].data.strides[0],
# self.u1[1].data.gpudata, self.u1[1].data.strides[0],
# self.u1[2].data.gpudata, self.u1[2].data.strides[0],
# self.cfl_data.gpudata)
#launch kernel
hip_check(
hip.hipModuleLaunchKernel(
kernel,
*self.grid_size,
*self.block_size,
sharedMemBytes=0,
stream=self.stream,
kernelParams=None,
extra=( # pass kernel's arguments
ctypes.c_int(self.nx), ctypes.c_int(self.ny),
ctypes.c_float(self.dx), ctypes.c_float(self.dy), ctypes.c_float(self.dt),
ctypes.c_float(self.g),
ctypes.c_int(substep),
ctypes.c_int(self.boundary_conditions),
ctypes.c_float(self.u0[0].data), ctypes.c_float(self.u0[0].data.strides[0]),
ctypes.c_float(self.u0[1].data), ctypes.c_float(self.u0[1].data.strides[0]),
ctypes.c_float(self.u0[2].data), ctypes.c_float(self.u0[2].data.strides[0]),
ctypes.c_float(self.u1[0].data), ctypes.c_float(self.u1[0].data.strides[0]),
ctypes.c_float(self.u1[1].data), ctypes.c_float(self.u1[1].data.strides[0]),
ctypes.c_float(self.u1[2].data), ctypes.c_float(self.u1[2].data.strides[0]),
self.cfl_data
)
)
)
hip_check(hip.hipDeviceSynchronize())
self.u0, self.u1 = self.u1, self.u0
hip_check(hip.hipModuleUnload(module))
hip_check(hip.hipFree(cfl_data))
print("--Launching Kernel .WAFKernel. is ok")
def getOutput(self):
return self.u0
def check(self):
self.u0.check()
self.u1.check()
# computing min with hipblas: the output is an index
def min_hipblas(self, num_elements, cfl_data, stream):
num_bytes = num_elements * np.dtype(np.float32).itemsize
num_bytes_i = np.dtype(np.int32).itemsize
indx_d = hip_check(hip.hipMalloc(num_bytes_i))
indx_h = np.zeros(1, dtype=np.int32)
x_temp = np.zeros(num_elements, dtype=np.float32)
#print("--size.data:", cfl_data.size)
handle = hip_check(hipblas.hipblasCreate())
#hip_check(hipblas.hipblasGetStream(handle, stream))
#"incx" [int] specifies the increment for the elements of x. incx must be > 0.
hip_check(hipblas.hipblasIsamin(handle, num_elements, cfl_data, 1, indx_d))
# destruction of handle
hip_check(hipblas.hipblasDestroy(handle))
# copy result (stored in indx_d) back to the host (store in indx_h)
hip_check(hip.hipMemcpyAsync(indx_h,indx_d,num_bytes_i,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
hip_check(hip.hipMemcpyAsync(x_temp,cfl_data,num_bytes,hip.hipMemcpyKind.hipMemcpyDeviceToHost,stream))
#hip_check(hip.hipMemsetAsync(cfl_data,0,num_bytes,self.stream))
hip_check(hip.hipStreamSynchronize(stream))
min_value = x_temp.flatten()[indx_h[0]-1]
# clean up
hip_check(hip.hipStreamDestroy(stream))
hip_check(hip.hipFree(cfl_data))
return min_value
def computeDt(self):
#max_dt = gpuarray.min(self.cfl_data, stream=self.stream).get();
max_dt = self.min_hipblas(self.cfl_data.size, self.cfl_data, self.stream)
return max_dt*0.5

View File

@ -0,0 +1,5 @@
#!/bin/env python
# -*- coding: utf-8 -*-
# Nothing general to do

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,250 @@
/*
This kernel implements the Central Upwind flux function to
solve the Euler equations
Copyright (C) 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "EulerCommon.h"
#include "limiters.h"
__device__
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float4 Q_rl = make_float4(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] - 0.5f*Qx[3][j][i+1]);
const float4 Q_rr = make_float4(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] + 0.5f*Qx[3][j][i+1]);
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i],
Q[3][j][i] - 0.5f*Qx[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i],
Q[3][j][i] + 0.5f*Qx[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
//const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
F[3][j][i] = flux.w;
}
}
}
__device__
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float4 Q_rl = make_float4(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] - 0.5f*Qy[3][j+1][i]);
const float4 Q_rr = make_float4(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] + 0.5f*Qy[3][j+1][i]);
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i],
Q[3][j][i] - 0.5f*Qy[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i],
Q[3][j][i] + 0.5f*Qy[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
G[3][j][i] = flux.w;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float gamma_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* rho0_ptr_, int rho0_pitch_,
float* rho_u0_ptr_, int rho_u0_pitch_,
float* rho_v0_ptr_, int rho_v0_pitch_,
float* E0_ptr_, int E0_pitch_,
//Output h^{n+1}
float* rho1_ptr_, int rho1_pitch_,
float* rho_u1_ptr_, int rho_u1_pitch_,
float* rho_v1_ptr_, int rho_v1_pitch_,
float* E1_ptr_, int E1_pitch_,
//Output CFL
float* cfl_,
//Subarea of internal domain to compute
int x0=0, int y0=0,
int x1=0, int y1=0) {
if(x1 == 0)
x1 = nx_;
if(y1 == 0)
y1 = ny_;
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 4;
//Shared memory variables
__shared__ float Q[4][h+2*gc_y][w+2*gc_x];
__shared__ float Qx[4][h+2*gc_y][w+2*gc_x];
__shared__ float F[4][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, -1, 1>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, 1, -1>(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, 1, 1>( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,251 @@
#include "hip/hip_runtime.h"
/*
This kernel implements the Central Upwind flux function to
solve the Euler equations
Copyright (C) 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "EulerCommon.h"
#include "limiters.h"
__device__
void computeFluxF(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float4 Q_rl = make_float4(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] - 0.5f*Qx[3][j][i+1]);
const float4 Q_rr = make_float4(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1],
Q[3][j][i+1] + 0.5f*Qx[3][j][i+1]);
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i],
Q[3][j][i] - 0.5f*Qx[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i],
Q[3][j][i] + 0.5f*Qx[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
//const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
F[3][j][i] = flux.w;
}
}
}
__device__
void computeFluxG(float Q[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[4][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float gamma_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float4 Q_rl = make_float4(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] - 0.5f*Qy[3][j+1][i]);
const float4 Q_rr = make_float4(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i],
Q[3][j+1][i] + 0.5f*Qy[3][j+1][i]);
const float4 Q_ll = make_float4(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i],
Q[3][j][i] - 0.5f*Qy[3][j][i]);
const float4 Q_lr = make_float4(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i],
Q[3][j][i] + 0.5f*Qy[3][j][i]);
//Evolve half a timestep (predictor step)
const float4 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, gamma_) - F_func(Q_rr, gamma_));
const float4 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, gamma_) - F_func(Q_lr, gamma_));
// Compute flux based on prediction
const float4 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, gamma_);
//const float4 flux = HLL_flux(Q_l_bar, Q_r_bar, gamma_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
G[3][j][i] = flux.w;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float gamma_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* rho0_ptr_, int rho0_pitch_,
float* rho_u0_ptr_, int rho_u0_pitch_,
float* rho_v0_ptr_, int rho_v0_pitch_,
float* E0_ptr_, int E0_pitch_,
//Output h^{n+1}
float* rho1_ptr_, int rho1_pitch_,
float* rho_u1_ptr_, int rho_u1_pitch_,
float* rho_v1_ptr_, int rho_v1_pitch_,
float* E1_ptr_, int E1_pitch_,
//Output CFL
float* cfl_,
//Subarea of internal domain to compute
int x0=0, int y0=0,
int x1=0, int y1=0) {
if(x1 == 0)
x1 = nx_;
if(y1 == 0)
y1 = ny_;
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 4;
//Shared memory variables
__shared__ float Q[4][h+2*gc_y][w+2*gc_x];
__shared__ float Qx[4][h+2*gc_y][w+2*gc_x];
__shared__ float F[4][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( rho0_ptr_, rho0_pitch_, Q[0], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, -1, 1>(rho_u0_ptr_, rho_u0_pitch_, Q[1], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, 1, -1>(rho_v0_ptr_, rho_v0_pitch_, Q[2], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
readBlock<w, h, gc_x, gc_y, 1, 1>( E0_ptr_, E0_pitch_, Q[3], nx_, ny_, boundary_conditions_, x0, y0, x1, y1);
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, gamma_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, gamma_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Gravity source term
if (g_ > 0.0f) {
const int i = threadIdx.x + gc_x;
const int j = threadIdx.y + gc_y;
const float rho_v = Q[2][j][i];
Q[2][j][i] -= g_*Q[0][j][i]*dt_;
Q[3][j][i] -= g_*rho_v*dt_;
__syncthreads();
}
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( rho1_ptr_, rho1_pitch_, Q[0], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>(rho_u1_ptr_, rho_u1_pitch_, Q[1], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>(rho_v1_ptr_, rho_v1_pitch_, Q[2], nx_, ny_, 0, 1, x0, y0, x1, y1);
writeBlock<w, h, gc_x, gc_y>( E1_ptr_, E1_pitch_, Q[3], nx_, ny_, 0, 1, x0, y0, x1, y1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, gamma_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,187 @@
/*
These CUDA functions implement different types of numerical flux
functions for the shallow water equations
Copyright (C) 2016, 2017, 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "limiters.h"
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
float shmem[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
const float dx_, const float dy_, const float gamma_,
float* output_) {
//Index of thread within block
const int tx = threadIdx.x + gc_x;
const int ty = threadIdx.y + gc_y;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + tx;
const int tj = blockDim.y*blockIdx.y + ty;
//Only internal cells
if (ti < nx_+gc_x && tj < ny_+gc_y) {
const float rho = Q[0][ty][tx];
const float u = Q[1][ty][tx] / rho;
const float v = Q[2][ty][tx] / rho;
const float max_u = dx_ / (fabsf(u) + sqrtf(gamma_*rho));
const float max_v = dy_ / (fabsf(v) + sqrtf(gamma_*rho));
shmem[ty][tx] = fminf(max_u, max_v);
}
__syncthreads();
//One row of threads loop over all rows
if (ti < nx_+gc_x && tj < ny_+gc_y) {
if (ty == gc_y) {
float min_val = shmem[ty][tx];
const int max_y = min(h, ny_+gc_y - tj);
for (int j=gc_y; j<max_y+gc_y; j++) {
min_val = fminf(min_val, shmem[j][tx]);
}
shmem[ty][tx] = min_val;
}
}
__syncthreads();
//One thread loops over first row to find global max
if (tx == gc_x && ty == gc_y) {
float min_val = shmem[ty][tx];
const int max_x = min(w, nx_+gc_x - ti);
for (int i=gc_x; i<max_x+gc_x; ++i) {
min_val = fminf(min_val, shmem[ty][i]);
}
const int idx = gridDim.x*blockIdx.y + blockIdx.x;
output_[idx] = min_val;
}
}
inline __device__ float pressure(float4 Q, float gamma) {
const float rho = Q.x;
const float rho_u = Q.y;
const float rho_v = Q.z;
const float E = Q.w;
return (gamma-1.0f)*(E-0.5f*(rho_u*rho_u + rho_v*rho_v)/rho);
}
__device__ float4 F_func(const float4 Q, float P) {
const float rho = Q.x;
const float rho_u = Q.y;
const float rho_v = Q.z;
const float E = Q.w;
const float u = rho_u/rho;
float4 F;
F.x = rho_u;
F.y = rho_u*u + P;
F.z = rho_v*u;
F.w = u*(E+P);
return F;
}
/**
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
*/
__device__ float4 HLL_flux(const float4 Q_l, const float4 Q_r, const float gamma) {
const float h_l = Q_l.x;
const float h_r = Q_r.x;
// Calculate velocities
const float u_l = Q_l.y / h_l;
const float u_r = Q_r.y / h_r;
// Calculate pressures
const float P_l = pressure(Q_l, gamma);
const float P_r = pressure(Q_r, gamma);
// Estimate the potential wave speeds
const float c_l = sqrt(gamma*P_l/Q_l.x);
const float c_r = sqrt(gamma*P_r/Q_r.x);
// Compute h in the "star region", h^dagger
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
//Upwind selection
if (S_l >= 0.0f) {
return F_func(Q_l, P_l);
}
else if (S_r <= 0.0f) {
return F_func(Q_r, P_r);
}
//Or estimate flux in the star region
else {
const float4 F_l = F_func(Q_l, P_l);
const float4 F_r = F_func(Q_r, P_r);
const float4 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
return flux;
}
}
/**
* Central upwind flux function
*/
__device__ float4 CentralUpwindFlux(const float4 Qm, const float4 Qp, const float gamma) {
const float Pp = pressure(Qp, gamma);
const float4 Fp = F_func(Qp, Pp);
const float up = Qp.y / Qp.x; // rho*u / rho
const float cp = sqrt(gamma*Pp/Qp.x); // sqrt(gamma*P/rho)
const float Pm = pressure(Qm, gamma);
const float4 Fm = F_func(Qm, Pm);
const float um = Qm.y / Qm.x; // rho*u / rho
const float cm = sqrt(gamma*Pm/Qm.x); // sqrt(gamma*P/rho)
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
}

View File

@ -0,0 +1,143 @@
/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dx_, const float dt_) {
//Compute fluxes along the x axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][j][i+1],
Q[1][j][i+1],
Q[2][j][i+1]);
const float3 Qm = make_float3(Q[0][j][i],
Q[1][j][i],
Q[2][j][i]);
// Computed flux
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dy_, const float dt_) {
//Compute fluxes along the y axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][j+1][i],
Q[2][j+1][i],
Q[1][j+1][i]);
const float3 Qm = make_float3(Q[0][j][i],
Q[2][j][i],
Q[1][j][i]);
// Computed flux
// Note that we swap back
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void FORCEKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Compute flux along x, and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute flux along y, and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Write to main memory
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,144 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dx_, const float dt_) {
//Compute fluxes along the x axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][j][i+1],
Q[1][j][i+1],
Q[2][j][i+1]);
const float3 Qm = make_float3(Q[0][j][i],
Q[1][j][i],
Q[2][j][i]);
// Computed flux
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_, const float dy_, const float dt_) {
//Compute fluxes along the y axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][j+1][i],
Q[2][j+1][i],
Q[1][j+1][i]);
const float3 Qm = make_float3(Q[0][j][i],
Q[2][j][i],
Q[1][j][i]);
// Computed flux
// Note that we swap back
const float3 flux = FORCE_1D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void FORCEKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Compute flux along x, and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute flux along y, and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Write to main memory
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,161 @@
/*
This GPU kernel implements the HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Q_r = make_float3(Q[0][j][i+1],
Q[1][j][i+1],
Q[2][j][i+1]);
const float3 Q_l = make_float3(Q[0][j][i],
Q[1][j][i],
Q[2][j][i]);
// Computed flux
const float3 flux = HLL_flux(Q_l, Q_r, g_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_) {
//Compute fluxes along the y axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Q_r = make_float3(Q[0][j+1][i],
Q[2][j+1][i],
Q[1][j+1][i]);
const float3 Q_l = make_float3(Q[0][j][i],
Q[2][j][i],
Q[1][j][i]);
// Computed flux
//Note that we here swap hu and hv back to the original
const float3 flux = HLL_flux(Q_l, Q_r, g_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void HLLKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Compute F flux
computeFluxF(Q, F, g_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute G flux
computeFluxG(Q, F, g_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,162 @@
#include "hip/hip_runtime.h"
/*
This GPU kernel implements the HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Q_r = make_float3(Q[0][j][i+1],
Q[1][j][i+1],
Q[2][j][i+1]);
const float3 Q_l = make_float3(Q[0][j][i],
Q[1][j][i],
Q[2][j][i]);
// Computed flux
const float3 flux = HLL_flux(Q_l, Q_r, g_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float g_) {
//Compute fluxes along the y axis
for (int j=threadIdx.y; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Q_r = make_float3(Q[0][j+1][i],
Q[2][j+1][i],
Q[1][j+1][i]);
const float3 Q_l = make_float3(Q[0][j][i],
Q[2][j][i],
Q[1][j][i]);
// Computed flux
//Note that we here swap hu and hv back to the original
const float3 flux = HLL_flux(Q_l, Q_r, g_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void HLLKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Compute F flux
computeFluxF(Q, F, g_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute G flux
computeFluxG(Q, F, g_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,216 @@
/*
This OpenCL kernel implements the second order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void HLL2Kernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float Qx[3][h+4][w+4];
__shared__ float F[3][h+4][w+4];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,217 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the second order HLL flux
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = HLL_flux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void HLL2Kernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float Qx[3][h+4][w+4];
__shared__ float F[3][h+4][w+4];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,233 @@
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
int j=ty;
const int l = j + 2; //Skip ghost cells
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
const int k = i + 1;
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
// Computed flux
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
const int l = j + 1;
{
int i=tx;
const int k = i + 2; //Skip ghost cells
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
// Computed flux
// Note that we swap back
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
__device__ void minmodSlopeX(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float theta_) {
//Reconstruct slopes along x axis
for (int p=0; p<3; ++p) {
{
const int j = threadIdx.y+2;
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+3; i+=BLOCK_WIDTH) {
Qx[p][j-2][i-1] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
}
}
}
}
/**
* Reconstructs a minmod slope for a whole block along the ordinate
*/
__device__ void minmodSlopeY(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float theta_) {
//Reconstruct slopes along y axis
for (int p=0; p<3; ++p) {
const int i = threadIdx.x + 2;
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+3; j+=BLOCK_HEIGHT) {
{
Qy[p][j-1][i-2] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
}
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07Kernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_order_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float Qx[3][h+2][w+2];
__shared__ float Qy[3][h+2][w+2];
__shared__ float F[3][h+1][w+1];
__shared__ float G[3][h+1][w+1];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Reconstruct slopes along x and axis
minmodSlopeX(Q, Qx, theta_);
minmodSlopeY(Q, Qy, theta_);
__syncthreads();
//Compute fluxes along the x and y axis
computeFluxF(Q, Qx, F, g_);
computeFluxG(Q, Qy, G, g_);
__syncthreads();
//Sum fluxes and advance in time for all internal cells
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
if (getOrder(step_order_) == 2 && getStep(step_order_) == 1) {
//Write to main memory
h_row[ti] = 0.5f*(h_row[ti] + Q[0][j][i]);
hu_row[ti] = 0.5f*(hu_row[ti] + Q[1][j][i]);
hv_row[ti] = 0.5f*(hv_row[ti] + Q[2][j][i]);
}
else {
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} //extern "C"

View File

@ -0,0 +1,234 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float F[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
int j=ty;
const int l = j + 2; //Skip ghost cells
for (int i=tx; i<BLOCK_WIDTH+1; i+=BLOCK_WIDTH) {
const int k = i + 1;
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][l][k+1] - 0.5f*Qx[0][j][i+1],
Q[1][l][k+1] - 0.5f*Qx[1][j][i+1],
Q[2][l][k+1] - 0.5f*Qx[2][j][i+1]);
const float3 Qm = make_float3(Q[0][l][k ] + 0.5f*Qx[0][j][i ],
Q[1][l][k ] + 0.5f*Qx[1][j][i ],
Q[2][l][k ] + 0.5f*Qx[2][j][i ]);
// Computed flux
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
float G[3][BLOCK_HEIGHT+1][BLOCK_WIDTH+1],
const float g_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<BLOCK_HEIGHT+1; j+=BLOCK_HEIGHT) {
const int l = j + 1;
{
int i=tx;
const int k = i + 2; //Skip ghost cells
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][l+1][k] - 0.5f*Qy[0][j+1][i],
Q[2][l+1][k] - 0.5f*Qy[2][j+1][i],
Q[1][l+1][k] - 0.5f*Qy[1][j+1][i]);
const float3 Qm = make_float3(Q[0][l ][k] + 0.5f*Qy[0][j ][i],
Q[2][l ][k] + 0.5f*Qy[2][j ][i],
Q[1][l ][k] + 0.5f*Qy[1][j ][i]);
// Computed flux
// Note that we swap back
const float3 flux = CentralUpwindFlux(Qm, Qp, g_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
__device__ void minmodSlopeX(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qx[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float theta_) {
//Reconstruct slopes along x axis
for (int p=0; p<3; ++p) {
{
const int j = threadIdx.y+2;
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+3; i+=BLOCK_WIDTH) {
Qx[p][j-2][i-1] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
}
}
}
}
/**
* Reconstructs a minmod slope for a whole block along the ordinate
*/
__device__ void minmodSlopeY(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float Qy[3][BLOCK_HEIGHT+2][BLOCK_WIDTH+2],
const float theta_) {
//Reconstruct slopes along y axis
for (int p=0; p<3; ++p) {
const int i = threadIdx.x + 2;
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+3; j+=BLOCK_HEIGHT) {
{
Qy[p][j-1][i-2] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
}
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07Kernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_order_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + threadIdx.x + 2; //Skip global ghost cells, i.e., +2
const int tj = blockDim.y*blockIdx.y + threadIdx.y + 2;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float Qx[3][h+2][w+2];
__shared__ float Qy[3][h+2][w+2];
__shared__ float F[3][h+1][w+1];
__shared__ float G[3][h+1][w+1];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Reconstruct slopes along x and axis
minmodSlopeX(Q, Qx, theta_);
minmodSlopeY(Q, Qy, theta_);
__syncthreads();
//Compute fluxes along the x and y axis
computeFluxF(Q, Qx, F, g_);
computeFluxG(Q, Qy, G, g_);
__syncthreads();
//Sum fluxes and advance in time for all internal cells
if (ti > 1 && ti < nx_+2 && tj > 1 && tj < ny_+2) {
const int i = tx + 2; //Skip local ghost cells, i.e., +2
const int j = ty + 2;
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
float* const h_row = (float*) ((char*) h1_ptr_ + h1_pitch_*tj);
float* const hu_row = (float*) ((char*) hu1_ptr_ + hu1_pitch_*tj);
float* const hv_row = (float*) ((char*) hv1_ptr_ + hv1_pitch_*tj);
if (getOrder(step_order_) == 2 && getStep(step_order_) == 1) {
//Write to main memory
h_row[ti] = 0.5f*(h_row[ti] + Q[0][j][i]);
hu_row[ti] = 0.5f*(hu_row[ti] + Q[1][j][i]);
hv_row[ti] = 0.5f*(hv_row[ti] + Q[2][j][i]);
}
else {
h_row[ti] = Q[0][j][i];
hu_row[ti] = Q[1][j][i];
hv_row[ti] = Q[2][j][i];
}
}
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} //extern "C"

View File

@ -0,0 +1,216 @@
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
template <int w, int h, int gc_x, int gc_y>
__device__
void computeFluxF(float Q[3][h+2*gc_y][w+2*gc_x],
float Qx[3][h+2*gc_y][w+2*gc_x],
float F[3][h+2*gc_y][w+2*gc_x],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
for (int i=threadIdx.x+1; i<w+2*gc_x-2; i+=w) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
template <int w, int h, int gc_x, int gc_y>
__device__
void computeFluxG(float Q[3][h+2*gc_y][w+2*gc_x],
float Qy[3][h+2*gc_y][w+2*gc_x],
float G[3][h+2*gc_y][w+2*gc_x],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<h+2*gc_y-2; j+=h) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float Qx[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
if (step_ == 0) {
//Along X
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Along Y
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
else {
//Along Y
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Along X
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,217 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
#include "limiters.h"
template <int w, int h, int gc_x, int gc_y>
__device__
void computeFluxF(float Q[3][h+2*gc_y][w+2*gc_x],
float Qx[3][h+2*gc_y][w+2*gc_x],
float F[3][h+2*gc_y][w+2*gc_x],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
for (int i=threadIdx.x+1; i<w+2*gc_x-2; i+=w) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
const float3 Q_rl = make_float3(Q[0][j][i+1] - 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] - 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] - 0.5f*Qx[2][j][i+1]);
const float3 Q_rr = make_float3(Q[0][j][i+1] + 0.5f*Qx[0][j][i+1],
Q[1][j][i+1] + 0.5f*Qx[1][j][i+1],
Q[2][j][i+1] + 0.5f*Qx[2][j][i+1]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qx[0][j][i],
Q[1][j][i] - 0.5f*Qx[1][j][i],
Q[2][j][i] - 0.5f*Qx[2][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qx[0][j][i],
Q[1][j][i] + 0.5f*Qx[1][j][i],
Q[2][j][i] + 0.5f*Qx[2][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dx_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dx_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
template <int w, int h, int gc_x, int gc_y>
__device__
void computeFluxG(float Q[3][h+2*gc_y][w+2*gc_x],
float Qy[3][h+2*gc_y][w+2*gc_x],
float G[3][h+2*gc_y][w+2*gc_x],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<h+2*gc_y-2; j+=h) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
// Reconstruct point values of Q at the left and right hand side
// of the cell for both the left (i) and right (i+1) cell
//NOte that hu and hv are swapped ("transposing" the domain)!
const float3 Q_rl = make_float3(Q[0][j+1][i] - 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] - 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] - 0.5f*Qy[1][j+1][i]);
const float3 Q_rr = make_float3(Q[0][j+1][i] + 0.5f*Qy[0][j+1][i],
Q[2][j+1][i] + 0.5f*Qy[2][j+1][i],
Q[1][j+1][i] + 0.5f*Qy[1][j+1][i]);
const float3 Q_ll = make_float3(Q[0][j][i] - 0.5f*Qy[0][j][i],
Q[2][j][i] - 0.5f*Qy[2][j][i],
Q[1][j][i] - 0.5f*Qy[1][j][i]);
const float3 Q_lr = make_float3(Q[0][j][i] + 0.5f*Qy[0][j][i],
Q[2][j][i] + 0.5f*Qy[2][j][i],
Q[1][j][i] + 0.5f*Qy[1][j][i]);
//Evolve half a timestep (predictor step)
const float3 Q_r_bar = Q_rl + dt_/(2.0f*dy_) * (F_func(Q_rl, g_) - F_func(Q_rr, g_));
const float3 Q_l_bar = Q_lr + dt_/(2.0f*dy_) * (F_func(Q_ll, g_) - F_func(Q_lr, g_));
// Compute flux based on prediction
const float3 flux = CentralUpwindFlux(Q_l_bar, Q_r_bar, g_);
//Write to shared memory
//Note that we here swap hu and hv back to the original
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
/**
* This unsplit kernel computes the 2D numerical scheme with a TVD RK2 time integration scheme
*/
extern "C" {
__global__ void KP07DimsplitKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
float theta_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[vars][h+2*gc_y][w+2*gc_x];
__shared__ float Qx[vars][h+2*gc_y][w+2*gc_x];
__shared__ float F[vars][h+2*gc_y][w+2*gc_x];
//Read into shared memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
if (step_ == 0) {
//Along X
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Along Y
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
else {
//Along Y
minmodSlopeY<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxG<w, h, gc_x, gc_y>(Q, Qx, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Along X
minmodSlopeX<w, h, gc_x, gc_y, vars>(Q, Qx, theta_);
__syncthreads();
computeFluxF<w, h, gc_x, gc_y>(Q, Qx, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, F[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,168 @@
/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxF(float Q[3][block_height+2][block_width+2],
float F[3][block_height][block_width+1],
const float g_, const float dx_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
const int j=ty;
const int l = j + 1; //Skip ghost cells
for (int i=tx; i<block_width+1; i+=block_width) {
const int k = i;
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][l][k+1],
Q[1][l][k+1],
Q[2][l][k+1]);
const float3 Qm = make_float3(Q[0][l][k],
Q[1][l][k],
Q[2][l][k]);
// Computed flux
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxG(float Q[3][block_height+2][block_width+2],
float G[3][block_height+1][block_width],
const float g_, const float dy_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<block_height+1; j+=block_height) {
const int l = j;
{
const int i=tx;
const int k = i + 1; //Skip ghost cells
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][l+1][k],
Q[2][l+1][k],
Q[1][l+1][k]);
const float3 Qm = make_float3(Q[0][l][k],
Q[2][l][k],
Q[1][l][k]);
// Computed flux
// Note that we swap back
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__
void LxFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
__shared__ float Q[vars][h+2][w+2];
__shared__ float F[vars][h ][w+1];
__shared__ float G[vars][h+1][w ];
//Read from global memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Compute fluxes along the x and y axis
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
__syncthreads();
//Evolve for all cells
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
__syncthreads();
//Write to main memory
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,169 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the classical Lax-Friedrichs scheme
for the shallow water equations, with edge fluxes.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxF(float Q[3][block_height+2][block_width+2],
float F[3][block_height][block_width+1],
const float g_, const float dx_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
{
const int j=ty;
const int l = j + 1; //Skip ghost cells
for (int i=tx; i<block_width+1; i+=block_width) {
const int k = i;
// Q at interface from the right and left
const float3 Qp = make_float3(Q[0][l][k+1],
Q[1][l][k+1],
Q[2][l][k+1]);
const float3 Qm = make_float3(Q[0][l][k],
Q[1][l][k],
Q[2][l][k]);
// Computed flux
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
template <int block_width, int block_height>
__device__
void computeFluxG(float Q[3][block_height+2][block_width+2],
float G[3][block_height+1][block_width],
const float g_, const float dy_, const float dt_) {
//Index of thread within block
const int tx = threadIdx.x;
const int ty = threadIdx.y;
for (int j=ty; j<block_height+1; j+=block_height) {
const int l = j;
{
const int i=tx;
const int k = i + 1; //Skip ghost cells
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Qp = make_float3(Q[0][l+1][k],
Q[2][l+1][k],
Q[1][l+1][k]);
const float3 Qm = make_float3(Q[0][l][k],
Q[2][l][k],
Q[1][l][k]);
// Computed flux
// Note that we swap back
const float3 flux = LxF_2D_flux(Qm, Qp, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__
void LxFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_,
//Output CFL
float* cfl_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 1;
const unsigned int gc_y = 1;
const unsigned int vars = 3;
__shared__ float Q[vars][h+2][w+2];
__shared__ float F[vars][h ][w+1];
__shared__ float G[vars][h+1][w ];
//Read from global memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
//Compute fluxes along the x and y axis
computeFluxF<w, h>(Q, F, g_, dx_, dt_);
computeFluxG<w, h>(Q, G, g_, dy_, dt_);
__syncthreads();
//Evolve for all cells
const int tx = threadIdx.x;
const int ty = threadIdx.y;
const int i = tx + 1; //Skip local ghost cells, i.e., +1
const int j = ty + 1;
Q[0][j][i] += (F[0][ty][tx] - F[0][ty ][tx+1]) * dt_ / dx_
+ (G[0][ty][tx] - G[0][ty+1][tx ]) * dt_ / dy_;
Q[1][j][i] += (F[1][ty][tx] - F[1][ty ][tx+1]) * dt_ / dx_
+ (G[1][ty][tx] - G[1][ty+1][tx ]) * dt_ / dy_;
Q[2][j][i] += (F[2][ty][tx] - F[2][ty ][tx+1]) * dt_ / dx_
+ (G[2][ty][tx] - G[2][ty+1][tx ]) * dt_ / dy_;
__syncthreads();
//Write to main memory
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
//Compute the CFL for this block
if (cfl_ != NULL) {
writeCfl<w, h, gc_x, gc_y, vars>(Q, Q[0], nx_, ny_, dx_, dy_, g_, cfl_);
}
}
} // extern "C"

View File

@ -0,0 +1,178 @@
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
const float3 Ql1 = make_float3(Q[0][j][i ], Q[1][j][i ], Q[2][j][i ]);
const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
// Computed flux
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
const float3 Ql1 = make_float3(Q[0][j ][i], Q[2][j ][i], Q[1][j ][i]);
const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
// Computed flux
// Note that we swap back
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void WAFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float F[3][h+4][w+4];
//Read into shared memory Q from global memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
}
} // extern "C"

View File

@ -0,0 +1,179 @@
#include "hip/hip_runtime.h"
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
const float3 Ql1 = make_float3(Q[0][j][i ], Q[1][j][i ], Q[2][j][i ]);
const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
// Computed flux
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
const float3 Ql1 = make_float3(Q[0][j ][i], Q[2][j ][i], Q[1][j ][i]);
const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
// Computed flux
// Note that we swap back
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void WAFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int step_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc_x = 2;
const unsigned int gc_y = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float F[3][h+4][w+4];
//Read into shared memory Q from global memory
readBlock<w, h, gc_x, gc_y, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc_x, gc_y, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Step 0 => evolve x first, then y
if (step_ == 0) {
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc_x, gc_y, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc_x, gc_y, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
writeBlock<w, h, gc_x, gc_y>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, 0, 1);
writeBlock<w, h, gc_x, gc_y>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, 0, 1);
}
} // extern "C"

View File

@ -0,0 +1,533 @@
/*
These CUDA functions implement different types of numerical flux
functions for the shallow water equations
Copyright (C) 2016, 2017, 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "limiters.h"
__device__ float3 F_func(const float3 Q, const float g) {
float3 F;
F.x = Q.y; //hu
F.y = Q.y*Q.y / Q.x + 0.5f*g*Q.x*Q.x; //hu*hu/h + 0.5f*g*h*h;
F.z = Q.y*Q.z / Q.x; //hu*hv/h;
return F;
}
/**
* Superbee flux limiter for WAF.
* Related to superbee limiter so that WAF_superbee(r, c) = 1 - (1-|c|)*superbee(r)
* @param r_ the ratio of upwind change (see Toro 2001, p. 203/204)
* @param c_ the courant number for wave k, dt*S_k/dx
*/
__device__ float WAF_superbee(float r_, float c_) {
// r <= 0.0
if (r_ <= 0.0f) {
return 1.0f;
}
// 0.0 <= r <= 1/2
else if (r_ <= 0.5f) {
return 1.0f - 2.0f*(1.0f - fabsf(c_))*r_;
}
// 1/2 <= r <= 1
else if (r_ <= 1.0f) {
return fabs(c_);
}
// 1 <= r <= 2
else if (r_ <= 2.0f) {
return 1.0f - (1.0f - fabsf(c_))*r_;
}
// r >= 2
else {
return 2.0f*fabsf(c_) - 1.0f;
}
}
__device__ float WAF_albada(float r_, float c_) {
if (r_ <= 0.0f) {
return 1.0f;
}
else {
return 1.0f - (1.0f - fabsf(c_)) * r_ * (1.0f + r_) / (1.0f + r_*r_);
}
}
__device__ float WAF_minbee(float r_, float c_) {
r_ = fmaxf(-1.0f, fminf(2.0f, r_));
if (r_ <= 0.0f) {
return 1.0f;
}
if (r_ >= 0.0f && r_ <= 1.0f) {
return 1.0f - (1.0f - fabsf(c_)) * r_;
}
else {
return fabsf(c_);
}
}
__device__ float WAF_minmod(float r_, float c_) {
return 1.0f - (1.0f - fabsf(c_)) * fmaxf(0.0f, fminf(1.0f, r_));
}
__device__ float limiterToWAFLimiter(float r_, float c_) {
return 1.0f - (1.0f - fabsf(c_))*r_;
}
// Compute h in the "star region", h^dagger
__device__ __inline__ float computeHStar(float h_l, float h_r, float u_l, float u_r, float c_l, float c_r, float g_) {
//This estimate for the h* gives rise to spurious oscillations.
//return 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float h_tmp = 0.5f * (c_l + c_r) + 0.25f * (u_l - u_r);
return h_tmp*h_tmp / g_;
}
/**
* Weighted average flux (Toro 2001, p 200) for interface {i+1/2}
* @param r_ The flux limiter parameter (see Toro 2001, p. 203)
* @param Q_l2 Q_{i-1}
* @param Q_l1 Q_{i}
* @param Q_r1 Q_{i+1}
* @param Q_r2 Q_{i+2}
*/
__device__ float3 WAF_1D_flux(const float3 Q_l2, const float3 Q_l1, const float3 Q_r1, const float3 Q_r2, const float g_, const float dx_, const float dt_) {
const float h_l = Q_l1.x;
const float h_r = Q_r1.x;
const float h_l2 = Q_l2.x;
const float h_r2 = Q_r2.x;
// Calculate velocities
const float u_l = Q_l1.y / h_l;
const float u_r = Q_r1.y / h_r;
const float u_l2 = Q_l2.y / h_l2;
const float u_r2 = Q_r2.y / h_r2;
const float v_l = Q_l1.z / h_l;
const float v_r = Q_r1.z / h_r;
const float v_l2 = Q_l2.z / h_l2;
const float v_r2 = Q_r2.z / h_r2;
// Estimate the potential wave speeds
const float c_l = sqrt(g_*h_l);
const float c_r = sqrt(g_*h_r);
const float c_l2 = sqrt(g_*h_l2);
const float c_r2 = sqrt(g_*h_r2);
// Compute h in the "star region", h^dagger
const float h_dag_l = computeHStar(h_l2, h_l, u_l2, u_l, c_l2, c_l, g_);
const float h_dag = computeHStar( h_l, h_r, u_l, u_r, c_l, c_r, g_);
const float h_dag_r = computeHStar( h_r, h_r2, u_r, u_r2, c_r, c_r2, g_);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag ) ) / h_l;
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag ) ) / h_r;
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1.0, S_star, v_l);
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1.0, S_star, v_r);
// Estimate the fluxes in the four regions
const float3 F_1 = F_func(Q_l1, g_);
const float3 F_4 = F_func(Q_r1, g_);
const float3 F_2 = F_1 + S_l*(Q_star_l - Q_l1);
const float3 F_3 = F_4 + S_r*(Q_star_r - Q_r1);
//const float3 F_2 = F_func(Q_star_l, g_);
//const float3 F_3 = F_func(Q_star_r, g_);
// Compute the courant numbers for the waves
const float c_1 = S_l * dt_ / dx_;
const float c_2 = S_star * dt_ / dx_;
const float c_3 = S_r * dt_ / dx_;
// Compute the "upwind change" vectors for the i-3/2 and i+3/2 interfaces
const float eps = 1.0e-6f;
const float r_1 = desingularize( (c_1 > 0.0f) ? (h_dag_l - h_l2) : (h_dag_r - h_r), eps) / desingularize((h_dag - h_l), eps);
const float r_2 = desingularize( (c_2 > 0.0f) ? (v_l - v_l2) : (v_r2 - v_r), eps ) / desingularize((v_r - v_l), eps);
const float r_3 = desingularize( (c_3 > 0.0f) ? (h_l - h_dag_l) : (h_r2 - h_dag_r), eps ) / desingularize((h_r - h_dag), eps);
// Compute the limiter
// We use h for the nonlinear waves, and v for the middle shear wave
const float A_1 = copysign(1.0f, c_1) * limiterToWAFLimiter(generalized_minmod(r_1, 1.9f), c_1);
const float A_2 = copysign(1.0f, c_2) * limiterToWAFLimiter(generalized_minmod(r_2, 1.9f), c_2);
const float A_3 = copysign(1.0f, c_3) * limiterToWAFLimiter(generalized_minmod(r_3, 1.9f), c_3);
//Average the fluxes
const float3 flux = 0.5f*( F_1 + F_4 )
- 0.5f*( A_1 * (F_2 - F_1)
+ A_2 * (F_3 - F_2)
+ A_3 * (F_4 - F_3) );
return flux;
}
/**
* Central upwind flux function
*/
__device__ float3 CentralUpwindFlux(const float3 Qm, float3 Qp, const float g) {
const float3 Fp = F_func(Qp, g);
const float up = Qp.y / Qp.x; // hu / h
const float cp = sqrt(g*Qp.x); // sqrt(g*h)
const float3 Fm = F_func(Qm, g);
const float um = Qm.y / Qm.x; // hu / h
const float cm = sqrt(g*Qm.x); // sqrt(g*h)
const float am = min(min(um-cm, up-cp), 0.0f); // largest negative wave speed
const float ap = max(max(um+cm, up+cp), 0.0f); // largest positive wave speed
return ((ap*Fm - am*Fp) + ap*am*(Qp-Qm))/(ap-am);
}
/**
* Godunovs centered scheme (Toro 2001, p 165)
*/
__device__ float3 GodC_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 Q_godc = 0.5f*(Q_l + Q_r) + (dt_/dx_)*(F_l - F_r);
return F_func(Q_godc, g_);
}
/**
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 180)
*/
__device__ float3 HLL_flux(const float3 Q_l, const float3 Q_r, const float g_) {
const float h_l = Q_l.x;
const float h_r = Q_r.x;
// Calculate velocities
const float u_l = Q_l.y / h_l;
const float u_r = Q_r.y / h_r;
// Estimate the potential wave speeds
const float c_l = sqrt(g_*h_l);
const float c_r = sqrt(g_*h_r);
// Compute h in the "star region", h^dagger
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
//Upwind selection
if (S_l >= 0.0f) {
return F_func(Q_l, g_);
}
else if (S_r <= 0.0f) {
return F_func(Q_r, g_);
}
//Or estimate flux in the star region
else {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 flux = (S_r*F_l - S_l*F_r + S_r*S_l*(Q_r - Q_l)) / (S_r-S_l);
return flux;
}
}
/**
* Harten-Lax-van Leer with contact discontinuity (Toro 2001, p 181)
*/
__device__ float3 HLLC_flux(const float3 Q_l, const float3 Q_r, const float g_) {
const float h_l = Q_l.x;
const float h_r = Q_r.x;
// Calculate velocities
const float u_l = Q_l.y / h_l;
const float u_r = Q_r.y / h_r;
// Estimate the potential wave speeds
const float c_l = sqrt(g_*h_l);
const float c_r = sqrt(g_*h_r);
// Compute h in the "star region", h^dagger
const float h_dag = 0.5f * (h_l+h_r) - 0.25f * (u_r-u_l)*(h_l+h_r)/(c_l+c_r);
const float q_l_tmp = sqrt(0.5f * ( (h_dag+h_l)*h_dag / (h_l*h_l) ) );
const float q_r_tmp = sqrt(0.5f * ( (h_dag+h_r)*h_dag / (h_r*h_r) ) );
const float q_l = (h_dag > h_l) ? q_l_tmp : 1.0f;
const float q_r = (h_dag > h_r) ? q_r_tmp : 1.0f;
// Compute wave speed estimates
const float S_l = u_l - c_l*q_l;
const float S_r = u_r + c_r*q_r;
const float S_star = ( S_l*h_r*(u_r - S_r) - S_r*h_l*(u_l - S_l) ) / ( h_r*(u_r - S_r) - h_l*(u_l - S_l) );
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
//Upwind selection
if (S_l >= 0.0f) {
return F_l;
}
else if (S_r <= 0.0f) {
return F_r;
}
//Or estimate flux in the "left star" region
else if (S_l <= 0.0f && 0.0f <=S_star) {
const float v_l = Q_l.z / h_l;
const float3 Q_star_l = h_l * (S_l - u_l) / (S_l - S_star) * make_float3(1, S_star, v_l);
const float3 flux = F_l + S_l*(Q_star_l - Q_l);
return flux;
}
//Or estimate flux in the "righ star" region
else if (S_star <= 0.0f && 0.0f <=S_r) {
const float v_r = Q_r.z / h_r;
const float3 Q_star_r = h_r * (S_r - u_r) / (S_r - S_star) * make_float3(1, S_star, v_r);
const float3 flux = F_r + S_r*(Q_star_r - Q_r);
return flux;
}
else {
return make_float3(-99999.9f, -99999.9f, -99999.9f); //Something wrong here
}
}
/**
* Lax-Friedrichs flux (Toro 2001, p 163)
*/
__device__ float3 LxF_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
return 0.5f*(F_l + F_r) + (dx_/(2.0f*dt_))*(Q_l - Q_r);
}
/**
* Lax-Friedrichs extended to 2D
*/
__device__ float3 LxF_2D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
//Note numerical diffusion for 2D here (0.25)
return 0.5f*(F_l + F_r) + (dx_/(4.0f*dt_))*(Q_l - Q_r);
}
/**
* Richtmeyer / Two-step Lax-Wendroff flux (Toro 2001, p 164)
*/
__device__ float3 LxW2_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_l = F_func(Q_l, g_);
const float3 F_r = F_func(Q_r, g_);
const float3 Q_lw2 = 0.5f*(Q_l + Q_r) + (dt_/(2.0f*dx_))*(F_l - F_r);
return F_func(Q_lw2, g_);
}
/**
* First Ordered Centered (Toro 2001, p.163)
*/
__device__ float3 FORCE_1D_flux(const float3 Q_l, const float3 Q_r, const float g_, const float dx_, const float dt_) {
const float3 F_lf = LxF_1D_flux(Q_l, Q_r, g_, dx_, dt_);
const float3 F_lw2 = LxW2_1D_flux(Q_l, Q_r, g_, dx_, dt_);
return 0.5f*(F_lf + F_lw2);
}
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void writeCfl(float Q[vars][h+2*gc_y][w+2*gc_x],
float shmem[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
const float dx_, const float dy_, const float g_,
float* output_) {
//Index of thread within block
const int tx = threadIdx.x + gc_x;
const int ty = threadIdx.y + gc_y;
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + tx;
const int tj = blockDim.y*blockIdx.y + ty;
//Only internal cells
if (ti < nx_+gc_x && tj < ny_+gc_y) {
const float h = Q[0][ty][tx];
const float u = Q[1][ty][tx] / h;
const float v = Q[2][ty][tx] / h;
const float max_u = dx_ / (fabsf(u) + sqrtf(g_*h));
const float max_v = dy_ / (fabsf(v) + sqrtf(g_*h));
shmem[ty][tx] = fminf(max_u, max_v);
}
__syncthreads();
//One row of threads loop over all rows
if (ti < nx_+gc_x && tj < ny_+gc_y) {
if (ty == gc_y) {
float min_val = shmem[ty][tx];
const int max_y = min(h, ny_+gc_y - tj);
for (int j=gc_y; j<max_y+gc_y; j++) {
min_val = fminf(min_val, shmem[j][tx]);
}
shmem[ty][tx] = min_val;
}
}
__syncthreads();
//One thread loops over first row to find global max
if (tx == gc_x && ty == gc_y) {
float min_val = shmem[ty][tx];
const int max_x = min(w, nx_+gc_x - ti);
for (int i=gc_x; i<max_x+gc_x; ++i) {
min_val = fminf(min_val, shmem[ty][i]);
}
const int idx = gridDim.x*blockIdx.y + blockIdx.x;
output_[idx] = min_val;
}
}

557
GPUSimulators/cuda/common.h Normal file
View File

@ -0,0 +1,557 @@
/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/**
* Float3 operators
*/
inline __device__ float3 operator*(const float a, const float3 b) {
return make_float3(a*b.x, a*b.y, a*b.z);
}
inline __device__ float3 operator/(const float3 a, const float b) {
return make_float3(a.x/b, a.y/b, a.z/b);
}
inline __device__ float3 operator-(const float3 a, const float3 b) {
return make_float3(a.x-b.x, a.y-b.y, a.z-b.z);
}
inline __device__ float3 operator+(const float3 a, const float3 b) {
return make_float3(a.x+b.x, a.y+b.y, a.z+b.z);
}
/**
* Float4 operators
*/
inline __device__ float4 operator*(const float a, const float4 b) {
return make_float4(a*b.x, a*b.y, a*b.z, a*b.w);
}
inline __device__ float4 operator/(const float4 a, const float b) {
return make_float4(a.x/b, a.y/b, a.z/b, a.w/b);
}
inline __device__ float4 operator-(const float4 a, const float4 b) {
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
inline __device__ float4 operator+(const float4 a, const float4 b) {
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
inline __device__ __host__ float clamp(const float f, const float a, const float b) {
return fmaxf(a, fminf(f, b));
}
inline __device__ __host__ int clamp(const int f, const int a, const int b) {
return (f < b) ? ( (f > a) ? f : a) : b;
}
__device__ float desingularize(float x_, float eps_) {
return copysign(1.0f, x_)*fmaxf(fabsf(x_), fminf(x_*x_/(2.0f*eps_)+0.5f*eps_, eps_));
}
/**
* Returns the step stored in the leftmost 16 bits
* of the 32 bit step-order integer
*/
inline __device__ int getStep(int step_order_) {
return step_order_ >> 16;
}
/**
* Returns the order stored in the rightmost 16 bits
* of the 32 bit step-order integer
*/
inline __device__ int getOrder(int step_order_) {
return step_order_ & 0x0000FFFF;
}
enum BoundaryCondition {
Dirichlet = 0,
Neumann = 1,
Periodic = 2,
Reflective = 3
};
inline __device__ BoundaryCondition getBCNorth(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 24) & 0x0000000F);
}
inline __device__ BoundaryCondition getBCSouth(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 16) & 0x0000000F);
}
inline __device__ BoundaryCondition getBCEast(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 8) & 0x0000000F);
}
inline __device__ BoundaryCondition getBCWest(int bc_) {
return static_cast<BoundaryCondition>((bc_ >> 0) & 0x0000000F);
}
// West boundary
template<int w, int h, int gc_x, int gc_y, int sign>
__device__ void bcWestReflective(float Q[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
const int i = threadIdx.x + gc_x;
const int ti = blockDim.x*blockIdx.x + i;
if (gc_x >= 1 && ti == gc_x) {
Q[j][i-1] = sign*Q[j][i];
}
if (gc_x >= 2 && ti == gc_x + 1) {
Q[j][i-3] = sign*Q[j][i];
}
if (gc_x >= 3 && ti == gc_x + 2) {
Q[j][i-5] = sign*Q[j][i];
}
if (gc_x >= 4 && ti == gc_x + 3) {
Q[j][i-7] = sign*Q[j][i];
}
if (gc_x >= 5 && ti == gc_x + 4) {
Q[j][i-9] = sign*Q[j][i];
}
}
}
// East boundary
template<int w, int h, int gc_x, int gc_y, int sign>
__device__ void bcEastReflective(float Q[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
const int i = threadIdx.x + gc_x;
const int ti = blockDim.x*blockIdx.x + i;
if (gc_x >= 1 && ti == nx_ + gc_x - 1) {
Q[j][i+1] = sign*Q[j][i];
}
if (gc_x >= 2 && ti == nx_ + gc_x - 2) {
Q[j][i+3] = sign*Q[j][i];
}
if (gc_x >= 3 && ti == nx_ + gc_x - 3) {
Q[j][i+5] = sign*Q[j][i];
}
if (gc_x >= 4 && ti == nx_ + gc_x - 4) {
Q[j][i+7] = sign*Q[j][i];
}
if (gc_x >= 5 && ti == nx_ + gc_x - 5) {
Q[j][i+9] = sign*Q[j][i];
}
}
}
// South boundary
template<int w, int h, int gc_x, int gc_y, int sign>
__device__ void bcSouthReflective(float Q[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
const int j = threadIdx.y + gc_y;
const int tj = blockDim.y*blockIdx.y + j;
if (gc_y >= 1 && tj == gc_y) {
Q[j-1][i] = sign*Q[j][i];
}
if (gc_y >= 2 && tj == gc_y + 1) {
Q[j-3][i] = sign*Q[j][i];
}
if (gc_y >= 3 && tj == gc_y + 2) {
Q[j-5][i] = sign*Q[j][i];
}
if (gc_y >= 4 && tj == gc_y + 3) {
Q[j-7][i] = sign*Q[j][i];
}
if (gc_y >= 5 && tj == gc_y + 4) {
Q[j-9][i] = sign*Q[j][i];
}
}
}
// North boundary
template<int w, int h, int gc_x, int gc_y, int sign>
__device__ void bcNorthReflective(float Q[h+2*gc_y][w+2*gc_x], const int nx_, const int ny_) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
const int j = threadIdx.y + gc_y;
const int tj = blockDim.y*blockIdx.y + j;
if (gc_y >= 1 && tj == ny_ + gc_y - 1) {
Q[j+1][i] = sign*Q[j][i];
}
if (gc_y >= 2 && tj == ny_ + gc_y - 2) {
Q[j+3][i] = sign*Q[j][i];
}
if (gc_y >= 3 && tj == ny_ + gc_y - 3) {
Q[j+5][i] = sign*Q[j][i];
}
if (gc_y >= 4 && tj == ny_ + gc_y - 4) {
Q[j+7][i] = sign*Q[j][i];
}
if (gc_y >= 5 && tj == ny_ + gc_y - 5) {
Q[j+9][i] = sign*Q[j][i];
}
}
}
/**
* Alter the index l so that it gives periodic boundary conditions when reading
*/
template<int gc_x>
inline __device__ int handlePeriodicBoundaryX(int k, int nx_, int boundary_conditions_) {
const int gc_pad = gc_x;
//West boundary: add an offset to read from east of domain
if (gc_x > 0) {
if ((k < gc_pad)
&& getBCWest(boundary_conditions_) == Periodic) {
k += (nx_+2*gc_x - 2*gc_pad);
}
//East boundary: subtract an offset to read from west of domain
else if ((k >= nx_+2*gc_x-gc_pad)
&& getBCEast(boundary_conditions_) == Periodic) {
k -= (nx_+2*gc_x - 2*gc_pad);
}
}
return k;
}
/**
* Alter the index l so that it gives periodic boundary conditions when reading
*/
template<int gc_y>
inline __device__ int handlePeriodicBoundaryY(int l, int ny_, int boundary_conditions_) {
const int gc_pad = gc_y;
//South boundary: add an offset to read from north of domain
if (gc_y > 0) {
if ((l < gc_pad)
&& getBCSouth(boundary_conditions_) == Periodic) {
l += (ny_+2*gc_y - 2*gc_pad);
}
//North boundary: subtract an offset to read from south of domain
else if ((l >= ny_+2*gc_y-gc_pad)
&& getBCNorth(boundary_conditions_) == Periodic) {
l -= (ny_+2*gc_y - 2*gc_pad);
}
}
return l;
}
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
inline __device__
void handleReflectiveBoundary(
float Q[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
const int boundary_conditions_) {
//Handle reflective boundary conditions
if (getBCNorth(boundary_conditions_) == Reflective) {
bcNorthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
__syncthreads();
}
if (getBCSouth(boundary_conditions_) == Reflective) {
bcSouthReflective<w, h, gc_x, gc_y, sign_y>(Q, nx_, ny_);
__syncthreads();
}
if (getBCEast(boundary_conditions_) == Reflective) {
bcEastReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
__syncthreads();
}
if (getBCWest(boundary_conditions_) == Reflective) {
bcWestReflective<w, h, gc_x, gc_y, sign_x>(Q, nx_, ny_);
__syncthreads();
}
}
/**
* Reads a block of data with ghost cells
*/
template<int w, int h, int gc_x, int gc_y, int sign_x, int sign_y>
inline __device__ void readBlock(float* ptr_, int pitch_,
float Q[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
const int boundary_conditions_,
int x0, int y0,
int x1, int y1) {
//Index of block within domain
const int bx = blockDim.x * blockIdx.x;
const int by = blockDim.y * blockIdx.y;
//Read into shared memory
//Loop over all variables
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
//Handle periodic boundary conditions here
int l = handlePeriodicBoundaryY<gc_y>(by + j + y0, ny_, boundary_conditions_);
l = min(l, min(ny_+2*gc_y-1, y1+2*gc_y-1));
float* row = (float*) ((char*) ptr_ + pitch_*l);
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
//Handle periodic boundary conditions here
int k = handlePeriodicBoundaryX<gc_x>(bx + i + x0, nx_, boundary_conditions_);
k = min(k, min(nx_+2*gc_x-1, x1+2*gc_x-1));
//Read from global memory
Q[j][i] = row[k];
}
}
__syncthreads();
handleReflectiveBoundary<w, h, gc_x, gc_y, sign_x, sign_y>(Q, nx_, ny_, boundary_conditions_);
}
/**
* Writes a block of data to global memory for the shallow water equations.
*/
template<int w, int h, int gc_x, int gc_y>
inline __device__ void writeBlock(float* ptr_, int pitch_,
float shmem[h+2*gc_y][w+2*gc_x],
const int nx_, const int ny_,
int rk_step_, int rk_order_,
int x0, int y0,
int x1, int y1) {
//Index of cell within domain
const int ti = blockDim.x*blockIdx.x + threadIdx.x + gc_x + x0;
const int tj = blockDim.y*blockIdx.y + threadIdx.y + gc_y + y0;
//In case we are writing only to a subarea given by (x0, y0) x (x1, y1)
const int max_ti = min(nx_+gc_x, x1+gc_x);
const int max_tj = min(ny_+gc_y, y1+gc_y);
//Only write internal cells
if ((x0+gc_x <= ti) && (ti < max_ti) && (y0+gc_y <= tj) && (tj < max_tj)) {
//Index of thread within block
const int tx = threadIdx.x + gc_x;
const int ty = threadIdx.y + gc_y;
float* const row = (float*) ((char*) ptr_ + pitch_*tj);
//Handle runge-kutta timestepping here
row[ti] = shmem[ty][tx];
/**
* SSPRK1 (forward Euler)
* u^1 = u^n + dt*f(u^n)
*/
if (rk_order_ == 1) {
row[ti] = shmem[ty][tx];
}
/**
* SSPRK2
* u^1 = u^n + dt*f(u^n)
* u^n+1 = 1/2*u^n + 1/2*(u^1 + dt*f(u^1))
*/
else if (rk_order_ == 2) {
if (rk_step_ == 0) {
row[ti] = shmem[ty][tx];
}
else if (rk_step_ == 1) {
row[ti] = 0.5f*row[ti] + 0.5f*shmem[ty][tx];
}
}
/**
* SSPRK3
* u^1 = u^n + dt*f(u^n)
* u^2 = 3/4 * u^n + 1/4 * (u^1 + dt*f(u^1))
* u^n+1 = 1/3 * u^n + 2/3 * (u^2 + dt*f(u^2))
* FIXME: This is not correct now, need a temporary to hold intermediate step u^2
*/
else if (rk_order_ == 3) {
if (rk_step_ == 0) {
row[ti] = shmem[ty][tx];
}
else if (rk_step_ == 1) {
row[ti] = 0.75f*row[ti] + 0.25f*shmem[ty][tx];
}
else if (rk_step_ == 2) {
const float t = 1.0f / 3.0f; //Not representable in base 2
row[ti] = t*row[ti] + (1.0f-t)*shmem[ty][tx];
}
}
// DEBUG
//row[ti] = 99.0;
}
}
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void evolveF(float Q[vars][h+2*gc_y][w+2*gc_x],
float F[vars][h+2*gc_y][w+2*gc_x],
const float dx_, const float dt_) {
for (int var=0; var < vars; ++var) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
for (int i=threadIdx.x+gc_x; i<w+gc_x; i+=w) {
Q[var][j][i] = Q[var][j][i] + (F[var][j][i-1] - F[var][j][i]) * dt_ / dx_;
}
}
}
}
/**
* Evolves the solution in time along the y axis (dimensional splitting)
*/
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void evolveG(float Q[vars][h+2*gc_y][w+2*gc_x],
float G[vars][h+2*gc_y][w+2*gc_x],
const float dy_, const float dt_) {
for (int var=0; var < vars; ++var) {
for (int j=threadIdx.y+gc_y; j<h+gc_y; j+=h) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
Q[var][j][i] = Q[var][j][i] + (G[var][j-1][i] - G[var][j][i]) * dt_ / dy_;
}
}
}
}
/**
* Helper function for debugging etc.
*/
template<int shmem_width, int shmem_height, int vars>
__device__ void memset(float Q[vars][shmem_height][shmem_width], float value) {
for (int k=0; k<vars; ++k) {
for (int j=threadIdx.y; j<shmem_height; ++j) {
for (int i=threadIdx.x; i<shmem_width; ++i) {
Q[k][j][i] = value;
}
}
}
}
template <unsigned int threads>
__device__ void reduce_max(float* data, unsigned int n) {
__shared__ float sdata[threads];
unsigned int tid = threadIdx.x;
//Reduce to "threads" elements
sdata[tid] = FLT_MIN;
for (unsigned int i=tid; i<n; i += threads) {
sdata[tid] = max(sdata[tid], dt_ctx.L[i]);
}
__syncthreads();
//Now, reduce all elements into a single element
if (threads >= 512) {
if (tid < 256) {
sdata[tid] = max(sdata[tid], sdata[tid + 256]);
}
__syncthreads();
}
if (threads >= 256) {
if (tid < 128) {
sdata[tid] = max(sdata[tid], sdata[tid + 128]);
}
__syncthreads();
}
if (threads >= 128) {
if (tid < 64) {
sdata[tid] = max(sdata[tid], sdata[tid + 64]);
}
__syncthreads();
}
if (tid < 32) {
volatile float* sdata_volatile = sdata;
if (threads >= 64) {
sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 32]);
}
if (tid < 16) {
if (threads >= 32) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 16]);
if (threads >= 16) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 8]);
if (threads >= 8) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 4]);
if (threads >= 4) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 2]);
if (threads >= 2) sdata_volatile[tid] = max(sdata_volatile[tid], sdata_volatile[tid + 1]);
}
if (tid == 0) {
return sdata_volatile[0];
}
}
}

View File

@ -0,0 +1,118 @@
/*
This file implements different flux and slope limiters
Copyright (C) 2016, 2017, 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/**
* Reconstructs a slope using the generalized minmod limiter based on three
* consecutive values
*/
__device__ __inline__ float minmodSlope(float left, float center, float right, float theta) {
const float backward = (center - left) * theta;
const float central = (right - left) * 0.5f;
const float forward = (right - center) * theta;
return 0.25f
*copysign(1.0f, backward)
*(copysign(1.0f, backward) + copysign(1.0f, central))
*(copysign(1.0f, central) + copysign(1.0f, forward))
*min( min(fabs(backward), fabs(central)), fabs(forward) );
}
/**
* Reconstructs a minmod slope for a whole block along the abscissa
*/
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void minmodSlopeX(float Q[vars][h+2*gc_y][w+2*gc_x],
float Qx[vars][h+2*gc_y][w+2*gc_x],
const float theta_) {
//Reconstruct slopes along x axis
for (int p=0; p<vars; ++p) {
for (int j=threadIdx.y; j<h+2*gc_y; j+=h) {
for (int i=threadIdx.x+1; i<w+2*gc_x-1; i+=w) {
Qx[p][j][i] = minmodSlope(Q[p][j][i-1], Q[p][j][i], Q[p][j][i+1], theta_);
}
}
}
}
/**
* Reconstructs a minmod slope for a whole block along the ordinate
*/
template<int w, int h, int gc_x, int gc_y, int vars>
__device__ void minmodSlopeY(float Q[vars][h+2*gc_y][w+2*gc_x],
float Qy[vars][h+2*gc_y][w+2*gc_x],
const float theta_) {
//Reconstruct slopes along y axis
for (int p=0; p<vars; ++p) {
for (int j=threadIdx.y+1; j<h+2*gc_y-1; j+=h) {
for (int i=threadIdx.x; i<w+2*gc_x; i+=w) {
Qy[p][j][i] = minmodSlope(Q[p][j-1][i], Q[p][j][i], Q[p][j+1][i], theta_);
}
}
}
}
__device__ float monotonized_central(float r_) {
return fmaxf(0.0f, fminf(2.0f, fminf(2.0f*r_, 0.5f*(1.0f+r_))));
}
__device__ float osher(float r_, float beta_) {
return fmaxf(0.0f, fminf(beta_, r_));
}
__device__ float sweby(float r_, float beta_) {
return fmaxf(0.0f, fmaxf(fminf(r_, beta_), fminf(beta_*r_, 1.0f)));
}
__device__ float minmod(float r_) {
return fmaxf(0.0f, fminf(1.0f, r_));
}
__device__ float generalized_minmod(float r_, float theta_) {
return fmaxf(0.0f, fminf(theta_*r_, fminf( (1.0f + r_) / 2.0f, theta_)));
}
__device__ float superbee(float r_) {
return fmaxf(0.0f, fmaxf(fminf(2.0f*r_, 1.0f), fminf(r_, 2.0f)));
}
__device__ float vanAlbada1(float r_) {
return (r_*r_ + r_) / (r_*r_ + 1.0f);
}
__device__ float vanAlbada2(float r_) {
return 2.0f*r_ / (r_*r_* + 1.0f);
}
__device__ float vanLeer(float r_) {
return (r_ + fabsf(r_)) / (1.0f + fabsf(r_));
}

View File

@ -0,0 +1,355 @@
# -*- coding: utf-8 -*-
"""
This python module implements Cuda context handling
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from GPUSimulators.Simulator import BoundaryCondition
import numpy as np
import gc
def getExtent(width, height, nx, ny, grid, index=None):
if grid is not None:
gx = grid.grid[0]
gy = grid.grid[1]
if index is not None:
i, j = grid.getCoordinate(index)
else:
i, j = grid.getCoordinate()
dx = (width / gx) / nx
dy = (height / gy) / ny
x0 = width*i/gx + 0.5*dx
y0 = height*j/gy + 0.5*dy
x1 = width*(i+1)/gx - 0.5*dx
y1 = height*(j+1)/gy - 0.5*dx
else:
dx = width / nx
dy = height / ny
x0 = 0.5*dx
y0 = 0.5*dy
x1 = width-0.5*dx
y1 = height-0.5*dy
return [x0, x1, y0, y1, dx, dy]
def downsample(highres_solution, x_factor, y_factor=None):
if (y_factor == None):
y_factor = x_factor
assert(highres_solution.shape[1] % x_factor == 0)
assert(highres_solution.shape[0] % y_factor == 0)
if (x_factor*y_factor == 1):
return highres_solution
if (len(highres_solution.shape) == 1):
highres_solution = highres_solution.reshape((1, highres_solution.size))
nx = highres_solution.shape[1] / x_factor
ny = highres_solution.shape[0] / y_factor
return highres_solution.reshape([int(ny), int(y_factor), int(nx), int(x_factor)]).mean(3).mean(1)
def bump(nx, ny, width, height,
bump_size=None,
ref_nx=None, ref_ny=None,
x_center=0.5, y_center=0.5,
h_ref=0.5, h_amp=0.1, u_ref=0.0, u_amp=0.1, v_ref=0.0, v_amp=0.1):
if (ref_nx == None):
ref_nx = nx
assert(ref_nx >= nx)
if (ref_ny == None):
ref_ny = ny
assert(ref_ny >= ny)
if (bump_size == None):
bump_size = width/5.0
ref_dx = width / float(ref_nx)
ref_dy = height / float(ref_ny)
x_center = ref_dx*ref_nx*x_center
y_center = ref_dy*ref_ny*y_center
x = ref_dx*(np.arange(0, ref_nx, dtype=np.float32)+0.5) - x_center
y = ref_dy*(np.arange(0, ref_ny, dtype=np.float32)+0.5) - y_center
xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
r = np.sqrt(xv**2 + yv**2)
xv = None
yv = None
gc.collect()
#Generate highres then downsample
#h_highres = 0.5 + 0.1*np.exp(-(xv**2/size + yv**2/size))
h_highres = h_ref + h_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size)
h = downsample(h_highres, ref_nx/nx, ref_ny/ny)
h_highres = None
gc.collect()
#hu_highres = 0.1*np.exp(-(xv**2/size + yv**2/size))
u_highres = u_ref + u_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size)
hu = downsample(u_highres, ref_nx/nx, ref_ny/ny)*h
u_highres = None
gc.collect()
#hu_highres = 0.1*np.exp(-(xv**2/size + yv**2/size))
v_highres = v_ref + v_amp*0.5*(1.0 + np.cos(np.pi*r/bump_size)) * (r < bump_size)
hv = downsample(v_highres, ref_nx/nx, ref_ny/ny)*h
v_highres = None
gc.collect()
dx = width/nx
dy = height/ny
return h, hu, hv, dx, dy
def genShockBubble(nx, ny, gamma, grid=None):
"""
Generate Shock-bubble interaction case for the Euler equations
"""
width = 4.0
height = 1.0
g = 0.0
rho = np.ones((ny, nx), dtype=np.float32)
u = np.zeros((ny, nx), dtype=np.float32)
v = np.zeros((ny, nx), dtype=np.float32)
E = np.zeros((ny, nx), dtype=np.float32)
p = np.ones((ny, nx), dtype=np.float32)
x0, x1, y0, y1, dx, dy = getExtent(width, height, nx, ny, grid)
x = np.linspace(x0, x1, nx, dtype=np.float32)
y = np.linspace(y0, y1, ny, dtype=np.float32)
xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
#Bubble
radius = 0.25
x_center = 0.5
y_center = 0.5
bubble = np.sqrt((xv-x_center)**2+(yv-y_center)**2) <= radius
rho = np.where(bubble, 0.1, rho)
#Left boundary
left = (xv < 0.1)
rho = np.where(left, 3.81250, rho)
u = np.where(left, 2.57669, u)
#Energy
p = np.where(left, 10.0, p)
E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0)
bc = BoundaryCondition({
'north': BoundaryCondition.Type.Reflective,
'south': BoundaryCondition.Type.Reflective,
'east': BoundaryCondition.Type.Periodic,
'west': BoundaryCondition.Type.Periodic
})
#Construct simulator
arguments = {
'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E,
'nx': nx, 'ny': ny,
'dx': dx, 'dy': dy,
'g': g,
'gamma': gamma,
'boundary_conditions': bc
}
return arguments
def genKelvinHelmholtz(nx, ny, gamma, roughness=0.125, grid=None, index=None):
"""
Roughness parameter in (0, 1.0] determines how "squiggly"
the interface betweeen the zones is
"""
def genZones(nx, ny, n):
"""
Generates the zones of the two fluids of K-H
"""
zone = np.zeros((ny, nx), dtype=np.int32)
def genSmoothRandom(nx, n):
n = max(1, min(n, nx))
if n == nx:
return np.random.random(nx)-0.5
else:
from scipy.interpolate import interp1d
#Control points and interpolator
xp = np.linspace(0.0, 1.0, n)
yp = np.random.random(n) - 0.5
if (n == 1):
kind = 'nearest'
elif (n == 2):
kind = 'linear'
elif (n == 3):
kind = 'quadratic'
else:
kind = 'cubic'
f = interp1d(xp, yp, kind=kind)
#Interpolation points
x = np.linspace(0.0, 1.0, nx)
return f(x)
x0, x1, y0, y1, _, dy = getExtent(1.0, 1.0, nx, ny, grid, index)
x = np.linspace(x0, x1, nx)
y = np.linspace(y0, y1, ny)
_, y = np.meshgrid(x, y)
#print(y+a[0])
a = genSmoothRandom(nx, n)*dy
zone = np.where(y > 0.25+a, zone, 1)
a = genSmoothRandom(nx, n)*dy
zone = np.where(y < 0.75+a, zone, 1)
return zone
width = 2.0
height = 1.0
g = 0.0
gamma = 1.4
rho = np.empty((ny, nx), dtype=np.float32)
u = np.empty((ny, nx), dtype=np.float32)
v = np.zeros((ny, nx), dtype=np.float32)
p = 2.5*np.ones((ny, nx), dtype=np.float32)
#Generate the different zones
zones = genZones(nx, ny, max(1, min(nx, int(nx*roughness))))
#Zone 0
zone0 = zones == 0
rho = np.where(zone0, 1.0, rho)
u = np.where(zone0, 0.5, u)
#Zone 1
zone1 = zones == 1
rho = np.where(zone1, 2.0, rho)
u = np.where(zone1, -0.5, u)
E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0)
_, _, _, _, dx, dy = getExtent(width, height, nx, ny, grid, index)
bc = BoundaryCondition({
'north': BoundaryCondition.Type.Periodic,
'south': BoundaryCondition.Type.Periodic,
'east': BoundaryCondition.Type.Periodic,
'west': BoundaryCondition.Type.Periodic
})
#Construct simulator
arguments = {
'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E,
'nx': nx, 'ny': ny,
'dx': dx, 'dy': dy,
'g': g,
'gamma': gamma,
'boundary_conditions': bc
}
return arguments
def genRayleighTaylor(nx, ny, gamma, version=0, grid=None):
"""
Generates Rayleigh-Taylor instability case
"""
width = 0.5
height = 1.5
g = 0.1
rho = np.zeros((ny, nx), dtype=np.float32)
u = np.zeros((ny, nx), dtype=np.float32)
v = np.zeros((ny, nx), dtype=np.float32)
p = np.zeros((ny, nx), dtype=np.float32)
x0, x1, y0, y1, dx, dy = getExtent(width, height, nx, ny, grid)
x = np.linspace(x0, x1, nx, dtype=np.float32)-width*0.5
y = np.linspace(y0, y1, ny, dtype=np.float32)-height*0.5
xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
#This gives a squigly interfact
if (version == 0):
y_threshold = 0.01*np.cos(2*np.pi*np.abs(x)/0.5)
rho = np.where(yv <= y_threshold, 1.0, rho)
rho = np.where(yv > y_threshold, 2.0, rho)
elif (version == 1):
rho = np.where(yv <= 0.0, 1.0, rho)
rho = np.where(yv > 0.0, 2.0, rho)
v = 0.01*(1.0 + np.cos(2*np.pi*xv/0.5))/4
else:
assert False, "Invalid version"
p = 2.5 - rho*g*yv
E = 0.5*rho*(u**2+v**2) + p/(gamma-1.0)
bc = BoundaryCondition({
'north': BoundaryCondition.Type.Reflective,
'south': BoundaryCondition.Type.Reflective,
'east': BoundaryCondition.Type.Reflective,
'west': BoundaryCondition.Type.Reflective
})
#Construct simulator
arguments = {
'rho': rho, 'rho_u': rho*u, 'rho_v': rho*v, 'E': E,
'nx': nx, 'ny': ny,
'dx': dx, 'dy': dy,
'g': g,
'gamma': gamma,
'boundary_conditions': bc
}
return arguments

View File

@ -0,0 +1,61 @@
# -*- coding: utf-8 -*-
"""
This python module implements visualization techniques/modes
Copyright (C) 2018 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
from matplotlib.colors import Normalize
def genSchlieren(rho):
#Compute length of z-component of normalized gradient vector
normal = np.gradient(rho) #[x, y, 1]
length = 1.0 / np.sqrt(normal[0]**2 + normal[1]**2 + 1.0)
schlieren = np.power(length, 128)
return schlieren
def genVorticity(rho, rho_u, rho_v):
u = rho_u / rho
v = rho_v / rho
u = np.sqrt(u**2 + v**2)
u_max = u.max()
du_dy, _ = np.gradient(u)
_, dv_dx = np.gradient(v)
#Length of curl
curl = dv_dx - du_dy
return curl
def genColors(rho, rho_u, rho_v, cmap, vmax, vmin):
schlieren = genSchlieren(rho)
curl = genVorticity(rho, rho_u, rho_v)
colors = Normalize(vmin, vmax, clip=True)(curl)
colors = cmap(colors)
for k in range(3):
colors[:,:,k] = colors[:,:,k]*schlieren
return colors