mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-11-27 23:49:48 +01:00
205 lines
7.4 KiB
Python
205 lines
7.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
This python module implements the different helper functions and
|
|
classes
|
|
|
|
Copyright (C) 2018 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import time
|
|
import subprocess
|
|
import logging
|
|
import json
|
|
|
|
from GPUSimulators.common.data_dumper import DataDumper
|
|
from GPUSimulators.common.progress_printer import ProgressPrinter
|
|
from GPUSimulators.common.timer import Timer
|
|
|
|
|
|
def safe_call(cmd):
|
|
logger = logging.getLogger(__name__)
|
|
try:
|
|
#git rev-parse HEAD
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
params = dict()
|
|
params['stderr'] = subprocess.STDOUT
|
|
params['cwd'] = current_dir
|
|
params['universal_newlines'] = True #text=True in more recent python
|
|
params['shell'] = False
|
|
if os.name == 'nt':
|
|
params['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP
|
|
stdout = subprocess.check_output(cmd, **params)
|
|
except subprocess.CalledProcessError as e:
|
|
output = e.output
|
|
logger.error("Git failed, \nReturn code: " + str(e.returncode) + "\nOutput: " + output)
|
|
raise e
|
|
|
|
return stdout
|
|
|
|
|
|
def get_git_hash():
|
|
return safe_call(["git", "rev-parse", "HEAD"])
|
|
|
|
|
|
def get_git_status():
|
|
return safe_call(["git", "status", "--porcelain", "-uno"])
|
|
|
|
|
|
def to_json(in_dict, compressed=True):
|
|
"""
|
|
Creates JSON string from a dictionary
|
|
"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
out_dict = in_dict.copy()
|
|
for key in out_dict:
|
|
if isinstance(out_dict[key], np.ndarray):
|
|
out_dict[key] = out_dict[key].tolist()
|
|
else:
|
|
try:
|
|
json.dumps(out_dict[key])
|
|
except:
|
|
value = str(out_dict[key])
|
|
logger.warning("JSON: Converting {:s} to string ({:s})".format(key, value))
|
|
out_dict[key] = value
|
|
return json.dumps(out_dict)
|
|
|
|
|
|
def run_simulation(simulator, simulator_args, outfile, save_times, save_var_names=[], dt=None):
|
|
"""
|
|
Runs a simulation, and store output in a netcdf file. Stores the times given in
|
|
save_times, and saves all the variables in list save_var_names. Elements in
|
|
save_var_names can be set to None if you do not want to save them
|
|
"""
|
|
|
|
profiling_data_sim_runner = { 'start': {}, 'end': {} }
|
|
profiling_data_sim_runner["start"]["t_sim_init"] = 0
|
|
profiling_data_sim_runner["end"]["t_sim_init"] = 0
|
|
profiling_data_sim_runner["start"]["t_nc_write"] = 0
|
|
profiling_data_sim_runner["end"]["t_nc_write"] = 0
|
|
profiling_data_sim_runner["start"]["t_full_step"] = 0
|
|
profiling_data_sim_runner["end"]["t_full_step"] = 0
|
|
|
|
profiling_data_sim_runner["start"]["t_sim_init"] = time.time()
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if len(save_times <= 0):
|
|
raise ValueError("Need to specify which times to save")
|
|
|
|
with Timer("construct") as t:
|
|
sim = simulator(**simulator_args)
|
|
logger.info(f"Constructed in {str(t.secs)} seconds")
|
|
|
|
#Create a netcdf file and simulate
|
|
with DataDumper(outfile, mode='w', clobber=False) as outdata:
|
|
|
|
#Create attributes (metadata)
|
|
outdata.ncfile.created = time.ctime(time.time())
|
|
outdata.ncfile.git_hash = get_git_hash()
|
|
outdata.ncfile.git_status = get_git_status()
|
|
outdata.ncfile.simulator = str(simulator)
|
|
|
|
# do not write fields to attributes (they are to large)
|
|
simulator_args_for_ncfile = simulator_args.copy()
|
|
del simulator_args_for_ncfile["rho"]
|
|
del simulator_args_for_ncfile["rho_u"]
|
|
del simulator_args_for_ncfile["rho_v"]
|
|
del simulator_args_for_ncfile["E"]
|
|
outdata.ncfile.sim_args = to_json(simulator_args_for_ncfile)
|
|
|
|
#Create dimensions
|
|
outdata.ncfile.createDimension('time', len(save_times))
|
|
outdata.ncfile.createDimension('x', simulator_args['nx'])
|
|
outdata.ncfile.createDimension('y', simulator_args['ny'])
|
|
|
|
#Create variables for dimensions
|
|
ncvars = {'time': outdata.ncfile.createVariable('time', np.dtype('float32').char, 'time'),
|
|
'x': outdata.ncfile.createVariable('x', np.dtype('float32').char, 'x'),
|
|
'y': outdata.ncfile.createVariable('y', np.dtype('float32').char, 'y')}
|
|
|
|
#Fill variables with proper values
|
|
ncvars['time'][:] = save_times
|
|
extent = sim.get_extent()
|
|
ncvars['x'][:] = np.linspace(extent[0], extent[1], simulator_args['nx'])
|
|
ncvars['y'][:] = np.linspace(extent[2], extent[3], simulator_args['ny'])
|
|
|
|
#Choose which variables to download (prune None from the list, but keep the index)
|
|
download_vars = []
|
|
for i, var_name in enumerate(save_var_names):
|
|
if var_name is not None:
|
|
download_vars += [i]
|
|
save_var_names = list(save_var_names[i] for i in download_vars)
|
|
|
|
#Create variables
|
|
for var_name in save_var_names:
|
|
ncvars[var_name] = outdata.ncfile.createVariable(
|
|
var_name, np.dtype('float32').char, ('time', 'y', 'x'), zlib=True, least_significant_digit=3)
|
|
|
|
#Create step sizes between each save
|
|
t_steps = np.empty_like(save_times)
|
|
t_steps[0] = save_times[0]
|
|
t_steps[1:] = save_times[1:] - save_times[0:-1]
|
|
|
|
profiling_data_sim_runner["end"]["t_sim_init"] = time.time()
|
|
|
|
# Start simulation loop
|
|
progress_printer = ProgressPrinter(save_times[-1], print_every=10)
|
|
for k in range(len(save_times)):
|
|
# Get target time and step size there
|
|
t_step = t_steps[k]
|
|
t_end = save_times[k]
|
|
|
|
# Sanity check simulator
|
|
try:
|
|
sim.check()
|
|
except AssertionError as e:
|
|
logger.error(f"Error after {sim.sim_steps()} steps (t={sim.sim_time()}: {str(e)}")
|
|
return outdata.filename
|
|
|
|
profiling_data_sim_runner["start"]["t_full_step"] += time.time()
|
|
|
|
# Simulate
|
|
if t_step > 0.0:
|
|
sim.simulate(t_step, dt)
|
|
|
|
profiling_data_sim_runner["end"]["t_full_step"] += time.time()
|
|
|
|
profiling_data_sim_runner["start"]["t_nc_write"] += time.time()
|
|
|
|
#Download
|
|
save_vars = sim.download(download_vars)
|
|
|
|
#Save to file
|
|
for i, var_name in enumerate(save_var_names):
|
|
ncvars[var_name][k, :] = save_vars[i]
|
|
|
|
profiling_data_sim_runner["end"]["t_nc_write"] += time.time()
|
|
|
|
#Write progress to screen
|
|
print_string = progress_printer.get_print_string(t_end)
|
|
if print_string:
|
|
logger.debug(print_string)
|
|
|
|
logger.debug(f"Simulated to t={t_end} in "
|
|
+ f"{sim.sim_steps()} timesteps (average dt={sim.sim_time() / sim.sim_steps()})")
|
|
|
|
return outdata.filename, profiling_data_sim_runner, sim.profiling_data_mpi
|
|
|