2018-11-09 11:46:34 +01:00

179 lines
5.5 KiB
Plaintext

/*
This OpenCL kernel implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "SWECommon.h"
/**
* Computes the flux along the x axis for all faces
*/
__device__
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dx_, const float dt_) {
for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
const float3 Ql1 = make_float3(Q[0][j][i ], Q[1][j][i ], Q[2][j][i ]);
const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
// Computed flux
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
F[0][j][i] = flux.x;
F[1][j][i] = flux.y;
F[2][j][i] = flux.z;
}
}
}
/**
* Computes the flux along the y axis for all faces
*/
__device__
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
const float g_, const float dy_, const float dt_) {
for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
// Q at interface from the right and left
// Note that we swap hu and hv
const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
const float3 Ql1 = make_float3(Q[0][j ][i], Q[2][j ][i], Q[1][j ][i]);
const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
// Computed flux
// Note that we swap back
const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
G[0][j][i] = flux.x;
G[1][j][i] = flux.z;
G[2][j][i] = flux.y;
}
}
}
extern "C" {
__global__ void WAFKernel(
int nx_, int ny_,
float dx_, float dy_, float dt_,
float g_,
int step_order_,
int boundary_conditions_,
//Input h^n
float* h0_ptr_, int h0_pitch_,
float* hu0_ptr_, int hu0_pitch_,
float* hv0_ptr_, int hv0_pitch_,
//Output h^{n+1}
float* h1_ptr_, int h1_pitch_,
float* hu1_ptr_, int hu1_pitch_,
float* hv1_ptr_, int hv1_pitch_) {
const unsigned int w = BLOCK_WIDTH;
const unsigned int h = BLOCK_HEIGHT;
const unsigned int gc = 2;
const unsigned int vars = 3;
//Shared memory variables
__shared__ float Q[3][h+4][w+4];
__shared__ float F[3][h+4][w+4];
//Read into shared memory Q from global memory
readBlock<w, h, gc, 1, 1>( h0_ptr_, h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc, -1, 1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
readBlock<w, h, gc, 1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
__syncthreads();
//Step 0 => evolve x first, then y
if (getStep(step_order_) == 0) {
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
__syncthreads();
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
}
//Step 1 => evolve y first, then x
else {
//Compute fluxes along the y axis and evolve
computeFluxG(Q, F, g_, dy_, dt_);
__syncthreads();
evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
__syncthreads();
//Compute fluxes along the x axis and evolve
computeFluxF(Q, F, g_, dx_, dt_);
__syncthreads();
evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
__syncthreads();
}
// Write to main memory for all internal cells
const int step = getStep(step_order_);
const int order = getOrder(step_order_);
writeBlock<w, h, gc>( h1_ptr_, h1_pitch_, Q[0], nx_, ny_, step, order);
writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, step, order);
writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, step, order);
}
} // extern "C"