mirror of
				https://github.com/smyalygames/FiniteVolumeGPU.git
				synced 2025-11-04 04:29:50 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			179 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
/*
 | 
						|
This OpenCL kernel implements the Kurganov-Petrova numerical scheme 
 | 
						|
for the shallow water equations, described in 
 | 
						|
A. Kurganov & Guergana Petrova
 | 
						|
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
 | 
						|
Scheme for the Saint-Venant System Communications in Mathematical
 | 
						|
Sciences, 5 (2007), 133-160. 
 | 
						|
 | 
						|
Copyright (C) 2016  SINTEF ICT
 | 
						|
 | 
						|
This program is free software: you can redistribute it and/or modify
 | 
						|
it under the terms of the GNU General Public License as published by
 | 
						|
the Free Software Foundation, either version 3 of the License, or
 | 
						|
(at your option) any later version.
 | 
						|
 | 
						|
This program is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#include "SWECommon.h"
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  * Computes the flux along the x axis for all faces
 | 
						|
  */
 | 
						|
__device__
 | 
						|
void computeFluxF(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
 | 
						|
                  float F[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
 | 
						|
                  const float g_, const float dx_, const float dt_) {
 | 
						|
    for (int j=threadIdx.y; j<BLOCK_HEIGHT+4; j+=BLOCK_HEIGHT) {
 | 
						|
        for (int i=threadIdx.x+1; i<BLOCK_WIDTH+2; i+=BLOCK_WIDTH) {
 | 
						|
            // Q at interface from the right and left
 | 
						|
            const float3 Ql2 = make_float3(Q[0][j][i-1], Q[1][j][i-1], Q[2][j][i-1]);
 | 
						|
            const float3 Ql1 = make_float3(Q[0][j][i  ], Q[1][j][i  ], Q[2][j][i  ]);
 | 
						|
            const float3 Qr1 = make_float3(Q[0][j][i+1], Q[1][j][i+1], Q[2][j][i+1]);
 | 
						|
            const float3 Qr2 = make_float3(Q[0][j][i+2], Q[1][j][i+2], Q[2][j][i+2]);
 | 
						|
 | 
						|
            // Computed flux
 | 
						|
            const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dx_, dt_);
 | 
						|
            F[0][j][i] = flux.x;
 | 
						|
            F[1][j][i] = flux.y;
 | 
						|
            F[2][j][i] = flux.z;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
  * Computes the flux along the y axis for all faces
 | 
						|
  */
 | 
						|
__device__
 | 
						|
void computeFluxG(float Q[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
 | 
						|
                  float G[3][BLOCK_HEIGHT+4][BLOCK_WIDTH+4],
 | 
						|
                  const float g_, const float dy_, const float dt_) {
 | 
						|
    for (int j=threadIdx.y+1; j<BLOCK_HEIGHT+2; j+=BLOCK_HEIGHT) {
 | 
						|
        for (int i=threadIdx.x; i<BLOCK_WIDTH+4; i+=BLOCK_WIDTH) {
 | 
						|
            // Q at interface from the right and left
 | 
						|
            // Note that we swap hu and hv
 | 
						|
            const float3 Ql2 = make_float3(Q[0][j-1][i], Q[2][j-1][i], Q[1][j-1][i]);
 | 
						|
            const float3 Ql1 = make_float3(Q[0][j  ][i], Q[2][j  ][i], Q[1][j  ][i]);
 | 
						|
            const float3 Qr1 = make_float3(Q[0][j+1][i], Q[2][j+1][i], Q[1][j+1][i]);
 | 
						|
            const float3 Qr2 = make_float3(Q[0][j+2][i], Q[2][j+2][i], Q[1][j+2][i]);
 | 
						|
            
 | 
						|
            // Computed flux
 | 
						|
            // Note that we swap back
 | 
						|
            const float3 flux = WAF_1D_flux(Ql2, Ql1, Qr1, Qr2, g_, dy_, dt_);
 | 
						|
            G[0][j][i] = flux.x;
 | 
						|
            G[1][j][i] = flux.z;
 | 
						|
            G[2][j][i] = flux.y;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
extern "C" {
 | 
						|
__global__ void WAFKernel(
 | 
						|
        int nx_, int ny_,
 | 
						|
        float dx_, float dy_, float dt_,
 | 
						|
        float g_, 
 | 
						|
        
 | 
						|
        int step_order_,
 | 
						|
        int boundary_conditions_,
 | 
						|
        
 | 
						|
        //Input h^n
 | 
						|
        float* h0_ptr_, int h0_pitch_,
 | 
						|
        float* hu0_ptr_, int hu0_pitch_,
 | 
						|
        float* hv0_ptr_, int hv0_pitch_,
 | 
						|
        
 | 
						|
        //Output h^{n+1}
 | 
						|
        float* h1_ptr_, int h1_pitch_,
 | 
						|
        float* hu1_ptr_, int hu1_pitch_,
 | 
						|
        float* hv1_ptr_, int hv1_pitch_) {   
 | 
						|
            
 | 
						|
    const unsigned int w = BLOCK_WIDTH;
 | 
						|
    const unsigned int h = BLOCK_HEIGHT;
 | 
						|
    const unsigned int gc = 2;
 | 
						|
    const unsigned int vars = 3;
 | 
						|
         
 | 
						|
    //Shared memory variables
 | 
						|
    __shared__ float Q[3][h+4][w+4];
 | 
						|
    __shared__ float F[3][h+4][w+4];
 | 
						|
    
 | 
						|
    
 | 
						|
    
 | 
						|
    //Read into shared memory Q from global memory
 | 
						|
    readBlock<w, h, gc,  1,  1>( h0_ptr_,  h0_pitch_, Q[0], nx_, ny_, boundary_conditions_);
 | 
						|
    readBlock<w, h, gc, -1,  1>(hu0_ptr_, hu0_pitch_, Q[1], nx_, ny_, boundary_conditions_);
 | 
						|
    readBlock<w, h, gc,  1, -1>(hv0_ptr_, hv0_pitch_, Q[2], nx_, ny_, boundary_conditions_);
 | 
						|
    __syncthreads();
 | 
						|
    
 | 
						|
    
 | 
						|
    
 | 
						|
    //Step 0 => evolve x first, then y
 | 
						|
    if (getStep(step_order_) == 0) {
 | 
						|
        //Compute fluxes along the x axis and evolve
 | 
						|
        computeFluxF(Q, F, g_, dx_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        
 | 
						|
        //Compute fluxes along the y axis and evolve
 | 
						|
        computeFluxG(Q, F, g_, dy_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
    }
 | 
						|
    //Step 1 => evolve y first, then x
 | 
						|
    else {
 | 
						|
        //Compute fluxes along the y axis and evolve
 | 
						|
        computeFluxG(Q, F, g_, dy_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        evolveG<w, h, gc, vars>(Q, F, dy_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        
 | 
						|
        //Compute fluxes along the x axis and evolve
 | 
						|
        computeFluxF(Q, F, g_, dx_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
        evolveF<w, h, gc, vars>(Q, F, dx_, dt_);
 | 
						|
        __syncthreads();
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    
 | 
						|
    // Write to main memory for all internal cells
 | 
						|
    const int step = getStep(step_order_);
 | 
						|
    const int order = getOrder(step_order_);
 | 
						|
    writeBlock<w, h, gc>( h1_ptr_,  h1_pitch_, Q[0], nx_, ny_, step, order);
 | 
						|
    writeBlock<w, h, gc>(hu1_ptr_, hu1_pitch_, Q[1], nx_, ny_, step, order);
 | 
						|
    writeBlock<w, h, gc>(hv1_ptr_, hv1_pitch_, Q[2], nx_, ny_, step, order);
 | 
						|
}
 | 
						|
 | 
						|
} // extern "C" |