2018-07-20 16:02:41 +02:00

201 lines
8.2 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the Kurganov-Petrova numerical scheme
for the shallow water equations, described in
A. Kurganov & Guergana Petrova
A Second-Order Well-Balanced Positivity Preserving Central-Upwind
Scheme for the Saint-Venant System Communications in Mathematical
Sciences, 5 (2007), 133-160.
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
import numpy as np
import pyopencl as cl #OpenCL in Python
from SWESimulators import Common
"""
Class that solves the SW equations using the Forward-Backward linear scheme
"""
class KP07:
"""
Initialization routine
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
g: Gravitational accelleration (9.81 m/s^2)
f: Coriolis parameter (1.2e-4 s^1)
r: Bottom friction coefficient (2.4e-3 m/s)
wind_type: Type of wind stress, 0=Uniform along shore, 1=bell shaped along shore, 2=moving cyclone
wind_tau0: Amplitude of wind stress (Pa)
wind_rho: Density of sea water (1025.0 kg / m^3)
wind_alpha: Offshore e-folding length (1/(10*dx) = 5e-6 m^-1)
wind_xm: Maximum wind stress for bell shaped wind stress
wind_Rc: Distance to max wind stress from center of cyclone (10dx = 200 000 m)
wind_x0: Initial x position of moving cyclone (dx*(nx/2) - u0*3600.0*48.0)
wind_y0: Initial y position of moving cyclone (dy*(ny/2) - v0*3600.0*48.0)
wind_u0: Translation speed along x for moving cyclone (30.0/sqrt(5.0))
wind_v0: Translation speed along y for moving cyclone (-0.5*u0)
"""
def __init__(self, \
cl_ctx, \
h0, hu0, hv0, \
nx, ny, \
dx, dy, dt, \
g, f=0.0, r=0.0, \
theta=1.3, use_rk2=True,
wind_stress=Common.WindStressParams(), \
block_width=16, block_height=16):
self.cl_ctx = cl_ctx
#Create an OpenCL command queue
self.cl_queue = cl.CommandQueue(self.cl_ctx)
#Get kernels
self.kp07_kernel = Common.get_kernel(self.cl_ctx, "KP07_kernel.opencl", block_width, block_height)
#Create data by uploading to device
ghost_cells_x = 2
ghost_cells_y = 2
self.cl_data = Common.SWEDataArkawaA(self.cl_ctx, nx, ny, ghost_cells_x, ghost_cells_y, h0, hu0, hv0)
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
#OpenCL kernel
self.nx = np.int32(nx)
self.ny = np.int32(ny)
self.dx = np.float32(dx)
self.dy = np.float32(dy)
self.dt = np.float32(dt)
self.g = np.float32(g)
self.f = np.float32(f)
self.r = np.float32(r)
self.theta = np.float32(theta)
self.use_rk2 = use_rk2
self.wind_stress = wind_stress
#Initialize time
self.t = np.float32(0.0)
#Compute kernel launch parameters
self.local_size = (block_width, block_height)
self.global_size = ( \
int(np.ceil(self.nx / float(self.local_size[0])) * self.local_size[0]), \
int(np.ceil(self.ny / float(self.local_size[1])) * self.local_size[1]) \
)
def __str__(self):
return "Kurganov-Petrova"
"""
Function which steps n timesteps
"""
def step(self, t_end=0.0):
n = int(t_end / self.dt + 1)
for i in range(0, n):
local_dt = np.float32(min(self.dt, t_end-i*self.dt))
if (local_dt <= 0.0):
break
if (self.use_rk2):
self.kp07_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
self.f, \
self.r, \
np.int32(0), \
self.cl_data.h0.data, self.cl_data.h0.pitch, \
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
self.cl_data.h1.data, self.cl_data.h1.pitch, \
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
self.cl_data.hv1.data, self.cl_data.hv1.pitch, \
self.wind_stress.type, \
self.wind_stress.tau0, self.wind_stress.rho, self.wind_stress.alpha, self.wind_stress.xm, self.wind_stress.Rc, \
self.wind_stress.x0, self.wind_stress.y0, \
self.wind_stress.u0, self.wind_stress.v0, \
self.t)
self.kp07_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
self.f, \
self.r, \
np.int32(1), \
self.cl_data.h1.data, self.cl_data.h1.pitch, \
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
self.cl_data.hv1.data, self.cl_data.hv1.pitch, \
self.cl_data.h0.data, self.cl_data.h0.pitch, \
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
self.wind_stress.type, \
self.wind_stress.tau0, self.wind_stress.rho, self.wind_stress.alpha, self.wind_stress.xm, self.wind_stress.Rc, \
self.wind_stress.x0, self.wind_stress.y0, \
self.wind_stress.u0, self.wind_stress.v0, \
self.t)
else:
self.kp07_kernel.swe_2D(self.cl_queue, self.global_size, self.local_size, \
self.nx, self.ny, \
self.dx, self.dy, local_dt, \
self.g, \
self.theta, \
self.f, \
self.r, \
np.int32(0), \
self.cl_data.h0.data, self.cl_data.h0.pitch, \
self.cl_data.hu0.data, self.cl_data.hu0.pitch, \
self.cl_data.hv0.data, self.cl_data.hv0.pitch, \
self.cl_data.h1.data, self.cl_data.h1.pitch, \
self.cl_data.hu1.data, self.cl_data.hu1.pitch, \
self.cl_data.hv1.data, self.cl_data.hv1.pitch, \
self.wind_stress.type, \
self.wind_stress.tau0, self.wind_stress.rho, self.wind_stress.alpha, self.wind_stress.xm, self.wind_stress.Rc, \
self.wind_stress.x0, self.wind_stress.y0, \
self.wind_stress.u0, self.wind_stress.v0, \
self.t)
self.cl_data.swap()
self.t += local_dt
return self.t
def download(self):
return self.cl_data.download(self.cl_queue)