mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 14:34:13 +02:00
429 lines
14 KiB
Python
429 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
This python module implements the different helper functions and
|
|
classes
|
|
|
|
Copyright (C) 2018 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import time
|
|
import re
|
|
import io
|
|
import hashlib
|
|
import logging
|
|
import gc
|
|
import netCDF4
|
|
|
|
import pycuda.compiler as cuda_compiler
|
|
import pycuda.gpuarray
|
|
import pycuda.driver as cuda
|
|
|
|
|
|
class Timer(object):
|
|
"""
|
|
Class which keeps track of time spent for a section of code
|
|
"""
|
|
def __init__(self, tag, log_level=logging.DEBUG):
|
|
self.tag = tag
|
|
self.log_level = log_level
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
def __enter__(self):
|
|
self.start = time.time()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.end = time.time()
|
|
self.secs = self.end - self.start
|
|
self.msecs = self.secs * 1000 # millisecs
|
|
self.logger.log(self.log_level, "%s: %f ms", self.tag, self.msecs)
|
|
|
|
def elapsed(self):
|
|
return time.time() - self.start
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DataDumper(object):
|
|
"""
|
|
Simple class for holding a netCDF4 object
|
|
(handles opening and closing in a nice way)
|
|
Use as
|
|
with DataDumper("filename") as data:
|
|
...
|
|
"""
|
|
def __init__(self, filename, *args, **kwargs):
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
#Create directory if needed
|
|
dirname = os.path.dirname(filename)
|
|
if not os.path.isdir(dirname):
|
|
self.logger.info("Creating directory " + dirname)
|
|
os.makedirs(dirname)
|
|
|
|
#Get mode of file if we have that
|
|
mode = None
|
|
if (args):
|
|
mode = args[0]
|
|
elif (kwargs and 'mode' in kwargs.keys()):
|
|
mode = kwargs['mode']
|
|
|
|
#Create new unique file if writing
|
|
if (mode):
|
|
if (("w" in mode) or ("+" in mode) or ("a" in mode)):
|
|
i = 0
|
|
stem, ext = os.path.splitext(filename)
|
|
while (os.path.isfile(filename)):
|
|
filename = "{:s}_{:04d}{:s}".format(stem, i, ext)
|
|
i = i+1
|
|
self.filename = os.path.abspath(filename)
|
|
|
|
#Save arguments
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
|
|
#Log output
|
|
self.logger.info("Writing output to " + self.filename)
|
|
|
|
|
|
def __enter__(self):
|
|
self.logger.info("Opening " + self.filename)
|
|
if (self.args):
|
|
self.logger.info("Arguments: " + str(self.args))
|
|
if (self.kwargs):
|
|
self.logger.info("Keyword arguments: " + str(self.kwargs))
|
|
self.ncfile = netCDF4.Dataset(self.filename, *self.args, **self.kwargs)
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.logger.info("Closing " + self.filename)
|
|
self.ncfile.close()
|
|
|
|
|
|
|
|
|
|
class ProgressPrinter(object):
|
|
"""
|
|
Small helper class for
|
|
"""
|
|
def __init__(self, total_steps, print_every=5):
|
|
self.logger = logging.getLogger(__name__)
|
|
self.start = time.time()
|
|
self.total_steps = total_steps
|
|
self.print_every = print_every
|
|
self.next_print_time = self.print_every
|
|
self.last_step = 0
|
|
self.secs_per_iter = None
|
|
|
|
def getPrintString(self, step):
|
|
elapsed = time.time() - self.start
|
|
if (elapsed > self.next_print_time):
|
|
dt = elapsed - (self.next_print_time - self.print_every)
|
|
dsteps = step - self.last_step
|
|
steps_remaining = self.total_steps - step
|
|
|
|
if (dsteps == 0):
|
|
return
|
|
|
|
self.last_step = step
|
|
self.next_print_time = elapsed + self.print_every
|
|
|
|
if not self.secs_per_iter:
|
|
self.secs_per_iter = dt / dsteps
|
|
self.secs_per_iter = 0.2*self.secs_per_iter + 0.8*(dt / dsteps)
|
|
|
|
remaining_time = steps_remaining * self.secs_per_iter
|
|
|
|
return "{:s}. Total: {:s}, elapsed: {:s}, remaining: {:s}".format(
|
|
ProgressPrinter.progressBar(step, self.total_steps),
|
|
ProgressPrinter.timeString(elapsed + remaining_time),
|
|
ProgressPrinter.timeString(elapsed),
|
|
ProgressPrinter.timeString(remaining_time))
|
|
|
|
def timeString(seconds):
|
|
seconds = int(max(seconds, 1))
|
|
minutes, seconds = divmod(seconds, 60)
|
|
hours, minutes = divmod(minutes, 60)
|
|
periods = [('h', hours), ('m', minutes), ('s', seconds)]
|
|
time_string = ' '.join('{}{}'.format(value, name)
|
|
for name, value in periods
|
|
if value)
|
|
return time_string
|
|
|
|
def progressBar(step, total_steps, width=30):
|
|
progress = np.round(width * step / total_steps).astype(np.int32)
|
|
progressbar = "0% [" + "#"*(progress) + "="*(width-progress) + "] 100%"
|
|
return progressbar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Class that holds 2D data
|
|
"""
|
|
class CudaArray2D:
|
|
"""
|
|
Uploads initial data to the CL device
|
|
"""
|
|
def __init__(self, stream, nx, ny, x_halo, y_halo, cpu_data=None, dtype=np.float32):
|
|
self.logger = logging.getLogger(__name__)
|
|
self.nx = nx
|
|
self.ny = ny
|
|
self.x_halo = x_halo
|
|
self.y_halo = y_halo
|
|
|
|
nx_halo = nx + 2*x_halo
|
|
ny_halo = ny + 2*y_halo
|
|
|
|
#self.logger.debug("Allocating [%dx%d] buffer", self.nx, self.ny)
|
|
#Should perhaps use pycuda.driver.mem_alloc_data.pitch() here
|
|
self.data = pycuda.gpuarray.zeros((ny_halo, nx_halo), dtype)
|
|
|
|
#If we don't have any data, just allocate and return
|
|
if cpu_data is None:
|
|
return
|
|
|
|
#Make sure data is in proper format
|
|
assert cpu_data.shape == (ny_halo, nx_halo) or cpu_data.shape == (self.ny, self.nx), "Wrong shape of data %s vs %s / %s" % (str(cpu_data.shape), str((self.ny, self.nx)), str((ny_halo, nx_halo)))
|
|
assert cpu_data.itemsize == 4, "Wrong size of data type"
|
|
assert not np.isfortran(cpu_data), "Wrong datatype (Fortran, expected C)"
|
|
|
|
#Create copy object from host to device
|
|
copy = cuda.Memcpy2D()
|
|
copy.set_src_host(cpu_data)
|
|
copy.set_dst_device(self.data.gpudata)
|
|
|
|
#Set offsets of upload in destination
|
|
x_offset = (nx_halo - cpu_data.shape[1]) // 2
|
|
y_offset = (ny_halo - cpu_data.shape[0]) // 2
|
|
copy.dst_x_in_bytes = x_offset*self.data.strides[1]
|
|
copy.dst_y = y_offset
|
|
|
|
#Set destination pitch
|
|
copy.dst_pitch = self.data.strides[0]
|
|
|
|
#Set width in bytes to copy for each row and
|
|
#number of rows to copy
|
|
width = max(self.nx, cpu_data.shape[1])
|
|
height = max(self.ny, cpu_data.shape[0])
|
|
copy.width_in_bytes = width*cpu_data.itemsize
|
|
copy.height = height
|
|
|
|
#Perform the copy
|
|
copy(stream)
|
|
|
|
#self.logger.debug("Buffer <%s> [%dx%d]: Allocated ", int(self.data.gpudata), self.nx, self.ny)
|
|
|
|
|
|
def __del__(self, *args):
|
|
#self.logger.debug("Buffer <%s> [%dx%d]: Releasing ", int(self.data.gpudata), self.nx, self.ny)
|
|
self.data.gpudata.free()
|
|
self.data = None
|
|
|
|
"""
|
|
Enables downloading data from GPU to Python
|
|
"""
|
|
def download(self, stream, async=False):
|
|
#self.logger.debug("Downloading [%dx%d] buffer", self.nx, self.ny)
|
|
#Allocate host memory
|
|
#cpu_data = cuda.pagelocked_empty((self.ny, self.nx), np.float32)
|
|
cpu_data = np.empty((self.ny, self.nx), dtype=np.float32)
|
|
|
|
#Create copy object from device to host
|
|
copy = cuda.Memcpy2D()
|
|
copy.set_src_device(self.data.gpudata)
|
|
copy.set_dst_host(cpu_data)
|
|
|
|
#Set offsets and pitch of source
|
|
copy.src_x_in_bytes = self.x_halo*self.data.strides[1]
|
|
copy.src_y = self.y_halo
|
|
copy.src_pitch = self.data.strides[0]
|
|
|
|
#Set width in bytes to copy for each row and
|
|
#number of rows to copy
|
|
copy.width_in_bytes = self.nx*cpu_data.itemsize
|
|
copy.height = self.ny
|
|
|
|
copy(stream)
|
|
if async==False:
|
|
stream.synchronize()
|
|
|
|
return cpu_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Class that holds 2D data
|
|
"""
|
|
class CudaArray3D:
|
|
"""
|
|
Uploads initial data to the CL device
|
|
"""
|
|
def __init__(self, stream, nx, ny, nz, x_halo, y_halo, z_halo, cpu_data=None, dtype=np.float32):
|
|
self.logger = logging.getLogger(__name__)
|
|
self.nx = nx
|
|
self.ny = ny
|
|
self.nz = nz
|
|
self.x_halo = x_halo
|
|
self.y_halo = y_halo
|
|
self.z_halo = z_halo
|
|
|
|
nx_halo = nx + 2*x_halo
|
|
ny_halo = ny + 2*y_halo
|
|
nz_halo = nz + 2*z_halo
|
|
|
|
#self.logger.debug("Allocating [%dx%dx%d] buffer", self.nx, self.ny, self.nz)
|
|
#Should perhaps use pycuda.driver.mem_alloc_data.pitch() here
|
|
self.data = pycuda.gpuarray.empty((nz_halo, ny_halo, nx_halo), dtype)
|
|
|
|
#If we don't have any data, just allocate and return
|
|
if cpu_data is None:
|
|
return
|
|
|
|
#Make sure data is in proper format
|
|
assert cpu_data.shape == (nz_halo, ny_halo, nx_halo) or cpu_data.shape == (self.nz, self.ny, self.nx), "Wrong shape of data %s vs %s / %s" % (str(cpu_data.shape), str((self.nz, self.ny, self.nx)), str((nz_halo, ny_halo, nx_halo)))
|
|
assert cpu_data.itemsize == 4, "Wrong size of data type"
|
|
assert not np.isfortran(cpu_data), "Wrong datatype (Fortran, expected C)"
|
|
|
|
#Create copy object from host to device
|
|
copy = cuda.Memcpy3D()
|
|
copy.set_src_host(cpu_data)
|
|
copy.set_dst_device(self.data.gpudata)
|
|
|
|
#Set offsets of destination
|
|
x_offset = (nx_halo - cpu_data.shape[2]) // 2
|
|
y_offset = (ny_halo - cpu_data.shape[1]) // 2
|
|
z_offset = (nz_halo - cpu_data.shape[0]) // 2
|
|
copy.dst_x_in_bytes = x_offset*self.data.strides[1]
|
|
copy.dst_y = y_offset
|
|
copy.dst_z = z_offset
|
|
|
|
#Set pitch of destination
|
|
copy.dst_pitch = self.data.strides[0]
|
|
|
|
#Set width in bytes to copy for each row and
|
|
#number of rows to copy
|
|
width = max(self.nx, cpu_data.shape[2])
|
|
height = max(self.ny, cpu_data.shape[1])
|
|
depth = max(self.nz, cpu-data.shape[0])
|
|
copy.width_in_bytes = width*cpu_data.itemsize
|
|
copy.height = height
|
|
copy.depth = depth
|
|
|
|
#Perform the copy
|
|
copy(stream)
|
|
|
|
#self.logger.debug("Buffer <%s> [%dx%d]: Allocated ", int(self.data.gpudata), self.nx, self.ny)
|
|
|
|
|
|
def __del__(self, *args):
|
|
#self.logger.debug("Buffer <%s> [%dx%d]: Releasing ", int(self.data.gpudata), self.nx, self.ny)
|
|
self.data.gpudata.free()
|
|
self.data = None
|
|
|
|
"""
|
|
Enables downloading data from GPU to Python
|
|
"""
|
|
def download(self, stream, async=False):
|
|
#self.logger.debug("Downloading [%dx%d] buffer", self.nx, self.ny)
|
|
#Allocate host memory
|
|
#cpu_data = cuda.pagelocked_empty((self.ny, self.nx), np.float32)
|
|
cpu_data = np.empty((self.nz, self.ny, self.nx), dtype=np.float32)
|
|
|
|
#Create copy object from device to host
|
|
copy = cuda.Memcpy2D()
|
|
copy.set_src_device(self.data.gpudata)
|
|
copy.set_dst_host(cpu_data)
|
|
|
|
#Set offsets and pitch of source
|
|
copy.src_x_in_bytes = self.x_halo*self.data.strides[1]
|
|
copy.src_y = self.y_halo
|
|
copy.src_z = self.z_halo
|
|
copy.src_pitch = self.data.strides[0]
|
|
|
|
#Set width in bytes to copy for each row and
|
|
#number of rows to copy
|
|
copy.width_in_bytes = self.nx*cpu_data.itemsize
|
|
copy.height = self.ny
|
|
copy.depth = self.nz
|
|
|
|
copy(stream)
|
|
if async==False:
|
|
stream.synchronize()
|
|
|
|
return cpu_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
A class representing an Arakawa A type (unstaggered, logically Cartesian) grid
|
|
"""
|
|
class ArakawaA2D:
|
|
"""
|
|
Uploads initial data to the CL device
|
|
"""
|
|
def __init__(self, stream, nx, ny, halo_x, halo_y, cpu_variables):
|
|
self.logger = logging.getLogger(__name__)
|
|
self.gpu_variables = []
|
|
for cpu_variable in cpu_variables:
|
|
self.gpu_variables += [CudaArray2D(stream, nx, ny, halo_x, halo_y, cpu_variable)]
|
|
|
|
def __getitem__(self, key):
|
|
assert type(key) == int, "Indexing is int based"
|
|
if (key > len(self.gpu_variables) or key < 0):
|
|
raise IndexError("Out of bounds")
|
|
return self.gpu_variables[key]
|
|
|
|
"""
|
|
Enables downloading data from CL device to Python
|
|
"""
|
|
def download(self, stream):
|
|
cpu_variables = []
|
|
for gpu_variable in self.gpu_variables:
|
|
cpu_variables += [gpu_variable.download(stream, async=True)]
|
|
stream.synchronize()
|
|
return cpu_variables
|
|
|
|
"""
|
|
Checks that data is still sane
|
|
"""
|
|
def check(self):
|
|
for i, gpu_variable in enumerate(self.gpu_variables):
|
|
var_sum = pycuda.gpuarray.sum(gpu_variable.data).get()
|
|
self.logger.debug("Data %d with size [%d x %d] has sum %f", i, gpu_variable.nx, gpu_variable.ny, var_sum)
|
|
assert np.isnan(var_sum) == False, "Data contains NaN values!"
|
|
|