2025-07-03 13:14:30 +02:00

317 lines
12 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements MPI simulator class
Copyright (C) 2018 SINTEF Digital
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import logging
from typing import Callable
import numpy as np
from mpi4py import MPI
import time
from GPUSimulators.simulator import BaseSimulator, BoundaryCondition
class BaseMPISimulator(BaseSimulator):
"""
Class which handles communication between simulators on different MPI nodes
"""
def __init__(self, sim, grid, data_func: Callable):
self.profiling_data_mpi = {'start': {}, 'end': {}}
self.profiling_data_mpi["start"]["t_mpi_halo_exchange"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] = 0
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] = 0
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] = 0
self.profiling_data_mpi["start"]["t_mpi_step"] = 0
self.profiling_data_mpi["end"]["t_mpi_step"] = 0
self.profiling_data_mpi["n_time_steps"] = 0
self.logger = logging.getLogger(__name__)
autotuner = sim.context.autotuner
sim.context.autotuner = None
boundary_conditions = sim.get_boundary_conditions()
super().__init__(sim.context,
sim.nx, sim.ny,
sim.dx, sim.dy,
boundary_conditions,
sim.cfl_scale,
sim.num_substeps,
sim.block_size[0], sim.block_size[1])
sim.context.autotuner = autotuner
self.sim = sim
self.grid = grid
# Get neighbor node ids
self.east = grid.get_east()
self.west = grid.get_west()
self.north = grid.get_north()
self.south = grid.get_south()
# Get coordinate of this node
# and handle global boundary conditions
new_boundary_conditions = BoundaryCondition({
'north': BoundaryCondition.Type.Dirichlet,
'south': BoundaryCondition.Type.Dirichlet,
'east': BoundaryCondition.Type.Dirichlet,
'west': BoundaryCondition.Type.Dirichlet
})
gi, gj = grid.get_coordinate()
# print("gi: " + str(gi) + ", gj: " + str(gj))
if gi == 0 and boundary_conditions.west != BoundaryCondition.Type.Periodic:
self.west = None
new_boundary_conditions.west = boundary_conditions.west
if gj == 0 and boundary_conditions.south != BoundaryCondition.Type.Periodic:
self.south = None
new_boundary_conditions.south = boundary_conditions.south
if gi == grid.grid[0] - 1 and boundary_conditions.east != BoundaryCondition.Type.Periodic:
self.east = None
new_boundary_conditions.east = boundary_conditions.east
if gj == grid.grid[1] - 1 and boundary_conditions.north != BoundaryCondition.Type.Periodic:
self.north = None
new_boundary_conditions.north = boundary_conditions.north
sim.set_boundary_conditions(new_boundary_conditions)
# Get number of variables
self.nvars = len(self.get_output().gpu_variables)
# Shorthands for computing extents and sizes
gc_x = int(self.sim.get_output()[0].x_halo)
gc_y = int(self.sim.get_output()[0].y_halo)
nx = int(self.sim.nx)
ny = int(self.sim.ny)
# Set regions for ghost cells to read from
# These have the format [x0, y0, width, height]
self.read_e = np.array([nx, 0, gc_x, ny + 2 * gc_y])
self.read_w = np.array([gc_x, 0, gc_x, ny + 2 * gc_y])
self.read_n = np.array([gc_x, ny, nx, gc_y])
self.read_s = np.array([gc_x, gc_y, nx, gc_y])
# Set regions for ghost cells to write to
self.write_e = self.read_e + np.array([gc_x, 0, 0, 0])
self.write_w = self.read_w - np.array([gc_x, 0, 0, 0])
self.write_n = self.read_n + np.array([0, gc_y, 0, 0])
self.write_s = self.read_s - np.array([0, gc_y, 0, 0])
self.in_e = None
self.in_w = None
self.in_n = None
self.in_s = None
# Allocate data for sending
self.out_e = None
self.out_w = None
self.out_n = None
self.out_s = None
# Creates the page locked memory
data_func()
self.logger.debug(f"Simulator rank {self.grid.comm.rank} initialized on {MPI.Get_processor_name()}")
self.full_exchange()
sim.context.synchronize()
def substep(self, dt, step_number):
# nvtx.mark("substep start", color="yellow")
self.profiling_data_mpi["start"]["t_mpi_step"] += time.time()
# nvtx.mark("substep external", color="blue")
self.sim.substep(dt, step_number, external=True, internal=False) # only "internal ghost cells"
# nvtx.mark("substep internal", color="red")
self.sim.substep(dt, step_number, internal=True, external=False) # "internal ghost cells" excluded
# nvtx.mark("substep full", color="blue")
# self.sim.substep(dt, step_number, external=True, internal=True)
self.sim.swap_buffers()
self.profiling_data_mpi["end"]["t_mpi_step"] += time.time()
# nvtx.mark("exchange", color="blue")
self.full_exchange()
# nvtx.mark("sync start", color="blue")
self.sim.synchronize()
self.sim.internal_synchronize()
# nvtx.mark("sync end", color="blue")
self.profiling_data_mpi["n_time_steps"] += 1
def get_output(self):
return self.sim.get_output()
def synchronize(self):
self.sim.synchronize()
def check(self):
return self.sim.check()
def compute_dt(self):
local_dt = np.array([np.float32(self.sim.compute_dt())])
global_dt = np.empty(1, dtype=np.float32)
self.grid.comm.Allreduce(local_dt, global_dt, op=MPI.MIN)
self.logger.debug(f"Local dt: {local_dt[0]}, global dt: {global_dt[0]}")
return global_dt[0]
def get_extent(self):
"""
Function which returns the extent of node with rank
in the grid
"""
width = self.sim.nx * self.sim.dx
height = self.sim.ny * self.sim.dy
i, j = self.grid.get_coordinate()
x0 = i * width
y0 = j * height
x1 = x0 + width
y1 = y0 + height
return [x0, x1, y0, y1]
def full_exchange(self):
####
# First transfer internal cells north-south
####
# Download from the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time()
if self.north is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_n[k, :, :], asynch=True, extent=self.read_n)
if self.south is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_s[k, :, :], asynch=True, extent=self.read_s)
self.sim.synchronize()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time()
# Send/receive to north/south neighbors
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
comm_send = []
comm_recv = []
if self.north is not None:
comm_send += [self.grid.comm.Isend(self.out_n, dest=self.north, tag=4 * self.nt + 0)]
comm_recv += [self.grid.comm.Irecv(self.in_n, source=self.north, tag=4 * self.nt + 1)]
if self.south is not None:
comm_send += [self.grid.comm.Isend(self.out_s, dest=self.south, tag=4 * self.nt + 1)]
comm_recv += [self.grid.comm.Irecv(self.in_s, source=self.south, tag=4 * self.nt + 0)]
# Wait for incoming transfers to complete
for comm in comm_recv:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
# Upload to the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time()
if self.north is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_n[k, :, :], extent=self.write_n)
if self.south is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_s[k, :, :], extent=self.write_s)
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time()
# Wait for sending to complete
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
for comm in comm_send:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
####
# Then transfer east-west including ghost cells that have been filled in by north-south transfer above
####
# Download from the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_download"] += time.time()
if self.east is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_e[k, :, :], asynch=True, extent=self.read_e)
if self.west is not None:
for k in range(self.nvars):
self.sim.u0[k].download(self.sim.stream, cpu_data=self.out_w[k, :, :], asynch=True, extent=self.read_w)
self.sim.synchronize()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_download"] += time.time()
# Send/receive to east/west neighbors
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
comm_send = []
comm_recv = []
if self.east is not None:
comm_send += [self.grid.comm.Isend(self.out_e, dest=self.east, tag=4 * self.nt + 2)]
comm_recv += [self.grid.comm.Irecv(self.in_e, source=self.east, tag=4 * self.nt + 3)]
if self.west is not None:
comm_send += [self.grid.comm.Isend(self.out_w, dest=self.west, tag=4 * self.nt + 3)]
comm_recv += [self.grid.comm.Irecv(self.in_w, source=self.west, tag=4 * self.nt + 2)]
# Wait for incoming transfers to complete
for comm in comm_recv:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
# Upload to the GPU
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_upload"] += time.time()
if self.east is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_e[k, :, :], extent=self.write_e)
if self.west is not None:
for k in range(self.nvars):
self.sim.u0[k].upload(self.sim.stream, self.in_w[k, :, :], extent=self.write_w)
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_upload"] += time.time()
# Wait for sending to complete
self.profiling_data_mpi["start"]["t_mpi_halo_exchange_sendreceive"] += time.time()
for comm in comm_send:
comm.wait()
self.profiling_data_mpi["end"]["t_mpi_halo_exchange_sendreceive"] += time.time()
def __create_pagelocked_memory(self):
"""
Allocate data for receiving
Note that east and west also transfer ghost cells
whilst north/south only transfer internal cells
Reuses the width/height defined in the read-extets above
"""
raise NotImplementedError("This function needs to be implemented in a subclass.")