FiniteVolumeGPU/saga-dev.job
2022-04-07 13:52:16 +02:00

55 lines
1.8 KiB
Bash

#!/bin/bash
# Job name:
#SBATCH --job-name=ShallowWaterGPUScalingDev
#
# Project:
#SBATCH --account=nn9882k
#
# Wall clock limit:
#SBATCH --time=00:02:00
#
# NOTE: See https://documentation.sigma2.no/jobs/projects_accounting.html when adjusting the values below
#
# Note: The environment variable CUDA_VISIBLE_DEVICES will show which GPU
# device(s) to use. It will have values '0', '1' or '0,1' corresponding to
# /dev/nvidia0, /dev/nvidia1 or both, respectively.
#SBATCH --partition=accel
#
# Max memory usage per task (core) - increasing this will cost more core hours:
#SBATCH --mem-per-cpu=3800M
#
# Number of tasks:
#SBATCH --nodes=1 --gpus-per-node=1 --ntasks-per-node=1
#
#SBATCH --qos=devel
## Set up job environment: (this is done automatically behind the scenes)
## (make sure to comment '#' or remove the following line 'source ...')
# source /cluster/bin/jobsetup
module restore system # instead of 'module purge' rather set module environment to the system default
module load CUDA/11.4.1
# It is also recommended to to list loaded modules, for easier debugging:
module list
set -o errexit # exit on errors
set -o nounset # Treat unset variables as errors (added for more easily discovering issues in your batch script)
## Copy input files to the work directory:
mkdir $SCRATCH/ShallowWaterGPU
cp -r . $SCRATCH/ShallowWaterGPU
## Make sure the results are copied back to the submit directory (see Work Directory below):
# chkfile MyResultFileq
# chkfile is replaced by 'savefile' on Saga
savefile "$SCRATCH/ShallowWaterGPU/*.log"
savefile "$SCRATCH/ShallowWaterGPU/*.nc"
savefile "$SCRATCH/ShallowWaterGPU/*.json"
## Do some work:
cd $SCRATCH/ShallowWaterGPU
srun $HOME/.conda/envs/ShallowWaterGPU_HPC/bin/python3 --version
srun $HOME/.conda/envs/ShallowWaterGPU_HPC/bin/python3 mpiTesting.py -nx 1024 -ny 1024 --profile