Martin Lilleeng Sætra acb7d2ab39 Async mem ops
2022-04-26 12:10:22 +00:00

288 lines
9.3 KiB
Python

# -*- coding: utf-8 -*-
"""
This python module implements the classical Lax-Friedrichs numerical
scheme for the shallow water equations
Copyright (C) 2016 SINTEF ICT
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
#Import packages we need
import numpy as np
import logging
from enum import IntEnum
import pycuda.compiler as cuda_compiler
import pycuda.gpuarray
import pycuda.driver as cuda
from GPUSimulators import Common
class BoundaryCondition(object):
"""
Class for holding boundary conditions for global boundaries
"""
class Type(IntEnum):
"""
Enum that describes the different types of boundary conditions
WARNING: MUST MATCH THAT OF common.h IN CUDA
"""
Dirichlet = 0,
Neumann = 1,
Periodic = 2,
Reflective = 3
def __init__(self, types={
'north': Type.Reflective,
'south': Type.Reflective,
'east': Type.Reflective,
'west': Type.Reflective
}):
"""
Constructor
"""
self.north = types['north']
self.south = types['south']
self.east = types['east']
self.west = types['west']
if (self.north == BoundaryCondition.Type.Neumann \
or self.south == BoundaryCondition.Type.Neumann \
or self.east == BoundaryCondition.Type.Neumann \
or self.west == BoundaryCondition.Type.Neumann):
raise(NotImplementedError("Neumann boundary condition not supported"))
def __str__(self):
return '[north={:s}, south={:s}, east={:s}, west={:s}]'.format(str(self.north), str(self.south), str(self.east), str(self.west))
def asCodedInt(self):
"""
Helper function which packs four boundary conditions into one integer
"""
bc = 0
bc = bc | (self.north & 0x0000000F) << 24
bc = bc | (self.south & 0x0000000F) << 16
bc = bc | (self.east & 0x0000000F) << 8
bc = bc | (self.west & 0x0000000F) << 0
#for t in types:
# print("{0:s}, {1:d}, {1:032b}, {1:08b}".format(t, types[t]))
#print("bc: {0:032b}".format(bc))
return np.int32(bc)
def getTypes(bc):
types = {}
types['north'] = BoundaryCondition.Type((bc >> 24) & 0x0000000F)
types['south'] = BoundaryCondition.Type((bc >> 16) & 0x0000000F)
types['east'] = BoundaryCondition.Type((bc >> 8) & 0x0000000F)
types['west'] = BoundaryCondition.Type((bc >> 0) & 0x0000000F)
return types
class BaseSimulator(object):
def __init__(self,
context,
nx, ny,
dx, dy,
boundary_conditions,
cfl_scale,
num_substeps,
block_width, block_height):
"""
Initialization routine
context: GPU context to use
kernel_wrapper: wrapper function of GPU kernel
h0: Water depth incl ghost cells, (nx+1)*(ny+1) cells
hu0: Initial momentum along x-axis incl ghost cells, (nx+1)*(ny+1) cells
hv0: Initial momentum along y-axis incl ghost cells, (nx+1)*(ny+1) cells
nx: Number of cells along x-axis
ny: Number of cells along y-axis
dx: Grid cell spacing along x-axis (20 000 m)
dy: Grid cell spacing along y-axis (20 000 m)
dt: Size of each timestep (90 s)
cfl_scale: Courant number
num_substeps: Number of substeps to perform for a full step
"""
#Get logger
self.logger = logging.getLogger(__name__ + "." + self.__class__.__name__)
#Save input parameters
#Notice that we need to specify them in the correct dataformat for the
#GPU kernel
self.context = context
self.nx = np.int32(nx)
self.ny = np.int32(ny)
self.dx = np.float32(dx)
self.dy = np.float32(dy)
self.setBoundaryConditions(boundary_conditions)
self.cfl_scale = cfl_scale
self.num_substeps = num_substeps
#Handle autotuning block size
if (self.context.autotuner):
peak_configuration = self.context.autotuner.get_peak_performance(self.__class__)
block_width = int(peak_configuration["block_width"])
block_height = int(peak_configuration["block_height"])
self.logger.debug("Used autotuning to get block size [%d x %d]", block_width, block_height)
#Compute kernel launch parameters
self.block_size = (block_width, block_height, 1)
self.grid_size = (
int(np.ceil(self.nx / float(self.block_size[0]))),
int(np.ceil(self.ny / float(self.block_size[1])))
)
#Create a CUDA stream
self.stream = cuda.Stream()
self.internal_stream = cuda.Stream()
#Keep track of simulation time and number of timesteps
self.t = 0.0
self.nt = 0
def __str__(self):
return "{:s} [{:d}x{:d}]".format(self.__class__.__name__, self.nx, self.ny)
def simulate(self, t, dt=None):
"""
Function which simulates t_end seconds using the step function
Requires that the step() function is implemented in the subclasses
"""
printer = Common.ProgressPrinter(t)
t_start = self.simTime()
t_end = t_start + t
update_dt = True
if (dt is not None):
update_dt = False
self.dt = dt
while(self.simTime() < t_end):
# Update dt every 100 timesteps and cross your fingers it works
# for the next 100
if (update_dt and (self.simSteps() % 100 == 0)):
self.dt = self.computeDt()*self.cfl_scale
# Compute timestep for "this" iteration (i.e., shorten last timestep)
current_dt = np.float32(min(self.dt, t_end-self.simTime()))
# Stop if end reached (should not happen)
if (current_dt <= 0.0):
self.logger.warning("Timestep size {:d} is less than or equal to zero!".format(self.simSteps()))
break
# Step forward in time
self.step(current_dt)
#Print info
print_string = printer.getPrintString(self.simTime() - t_start)
if (print_string):
self.logger.info("%s: %s", self, print_string)
try:
self.check()
except AssertionError as e:
e.args += ("Step={:d}, time={:f}".format(self.simSteps(), self.simTime()),)
raise
def step(self, dt):
"""
Function which performs one single timestep of size dt
"""
for i in range(self.num_substeps):
self.substep(dt, i)
self.t += dt
self.nt += 1
def download(self, variables=None):
return self.getOutput().download(self.stream, variables)
def synchronize(self):
self.stream.synchronize()
def simTime(self):
return self.t
def simSteps(self):
return self.nt
def getExtent(self):
return [0, 0, self.nx*self.dx, self.ny*self.dy]
def setBoundaryConditions(self, boundary_conditions):
self.logger.debug("Boundary conditions set to {:s}".format(str(boundary_conditions)))
self.boundary_conditions = boundary_conditions.asCodedInt()
def getBoundaryConditions(self):
return BoundaryCondition(BoundaryCondition.getTypes(self.boundary_conditions))
def substep(self, dt, step_number):
"""
Function which performs one single substep with stepsize dt
"""
raise(NotImplementedError("Needs to be implemented in subclass"))
def getOutput(self):
raise(NotImplementedError("Needs to be implemented in subclass"))
def check(self):
self.logger.warning("check() is not implemented - please implement")
#raise(NotImplementedError("Needs to be implemented in subclass"))
def computeDt(self):
raise(NotImplementedError("Needs to be implemented in subclass"))
def stepOrderToCodedInt(step, order):
"""
Helper function which packs the step and order into a single integer
"""
step_order = (step << 16) | (order & 0x0000ffff)
#print("Step: {0:032b}".format(step))
#print("Order: {0:032b}".format(order))
#print("Mix: {0:032b}".format(step_order))
return np.int32(step_order)