mirror of
https://github.com/smyalygames/FiniteVolumeGPU.git
synced 2025-05-18 14:34:13 +02:00
353 lines
13 KiB
Python
353 lines
13 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
This python module implements the different helper functions and
|
|
classes
|
|
|
|
Copyright (C) 2018 SINTEF ICT
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
import time
|
|
import re
|
|
import io
|
|
import hashlib
|
|
import logging
|
|
|
|
import pycuda.compiler as cuda_compiler
|
|
import pycuda.gpuarray
|
|
import pycuda.driver as cuda
|
|
|
|
|
|
|
|
"""
|
|
Class which keeps track of time spent for a section of code
|
|
"""
|
|
class Timer(object):
|
|
def __init__(self, tag):
|
|
self.tag = tag
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
def __enter__(self):
|
|
self.start = time.time()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.end = time.time()
|
|
self.secs = self.end - self.start
|
|
self.msecs = self.secs * 1000 # millisecs
|
|
self.logger.info("%s: %f ms", self.tag, self.msecs)
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Class which keeps track of the CUDA context and some helper functions
|
|
"""
|
|
class CudaContext(object):
|
|
|
|
def __init__(self, verbose=True, blocking=False, use_cache=True):
|
|
self.verbose = verbose
|
|
self.blocking = blocking
|
|
self.use_cache = use_cache
|
|
self.logger = logging.getLogger(__name__)
|
|
self.kernels = {}
|
|
|
|
self.module_path = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
#Initialize cuda (must be first call to PyCUDA)
|
|
cuda.init(flags=0)
|
|
|
|
#Print some info about CUDA
|
|
self.logger.info("CUDA version %s", str(cuda.get_version()))
|
|
self.logger.info("Driver version %s", str(cuda.get_driver_version()))
|
|
|
|
self.cuda_device = cuda.Device(0)
|
|
if (self.verbose):
|
|
self.logger.info("Using '%s' GPU", self.cuda_device.name())
|
|
self.logger.debug(" => compute capability: %s", str(self.cuda_device.compute_capability()))
|
|
self.logger.debug(" => memory: %d MB", self.cuda_device.total_memory() / (1024*1024))
|
|
|
|
# Create the CUDA context
|
|
if (self.blocking):
|
|
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_BLOCKING_SYNC)
|
|
self.logger.warning("Using blocking context")
|
|
else:
|
|
self.cuda_context = self.cuda_device.make_context(flags=cuda.ctx_flags.SCHED_AUTO)
|
|
|
|
self.logger.info("Created context handle <%s>", str(self.cuda_context.handle))
|
|
|
|
#Create cache dir for cubin files
|
|
if (self.use_cache):
|
|
self.cache_path = os.path.join(self.module_path, "cuda_cache")
|
|
if not os.path.isdir(self.cache_path):
|
|
os.mkdir(self.cache_path)
|
|
self.logger.debug("Using CUDA cache dir %s", self.cache_path)
|
|
|
|
|
|
def __del__(self, *args):
|
|
self.logger.info("Cleaning up CUDA context handle <%s>", str(self.cuda_context.handle))
|
|
|
|
# Loop over all contexts in stack, and remove "this"
|
|
other_contexts = []
|
|
while (cuda.Context.get_current() != None):
|
|
context = cuda.Context.get_current()
|
|
if (context.handle != self.cuda_context.handle):
|
|
self.logger.debug("<%s> Popping <%s> (*not* ours)", str(self.cuda_context.handle), str(context.handle))
|
|
other_contexts = [context] + other_contexts
|
|
cuda.Context.pop()
|
|
else:
|
|
self.logger.debug("<%s> Popping <%s> (ours)", str(self.cuda_context.handle), str(context.handle))
|
|
cuda.Context.pop()
|
|
|
|
# Add all the contexts we popped that were not our own
|
|
for context in other_contexts:
|
|
self.logger.debug("<%s> Pushing <%s>", str(self.cuda_context.handle), str(context.handle))
|
|
cuda.Context.push(context)
|
|
|
|
self.logger.debug("<%s> Detaching", str(self.cuda_context.handle))
|
|
self.cuda_context.detach()
|
|
|
|
|
|
def __str__(self):
|
|
return "CudaContext id " + str(self.cuda_context.handle)
|
|
|
|
|
|
def hash_kernel(kernel_filename, include_dirs, verbose=False):
|
|
# Generate a kernel ID for our caches
|
|
num_includes = 0
|
|
max_includes = 100
|
|
kernel_hasher = hashlib.md5()
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Loop over file and includes, and check if something has changed
|
|
files = [kernel_filename]
|
|
while len(files):
|
|
|
|
if (num_includes > max_includes):
|
|
raise("Maximum number of includes reached - circular include in {:}?".format(kernel_filename))
|
|
|
|
filename = files.pop()
|
|
|
|
logger.debug("Hashing %s", filename)
|
|
|
|
modified = os.path.getmtime(filename)
|
|
|
|
# Open the file
|
|
with io.open(filename, "r") as file:
|
|
|
|
# Search for #inclue <something> and also hash the file
|
|
file_str = file.read()
|
|
kernel_hasher.update(file_str.encode('utf-8'))
|
|
kernel_hasher.update(str(modified).encode('utf-8'))
|
|
|
|
#Find all includes
|
|
includes = re.findall('^\W*#include\W+(.+?)\W*$', file_str, re.M)
|
|
|
|
# Loop over everything that looks like an include
|
|
for include_file in includes:
|
|
|
|
#Search through include directories for the file
|
|
file_path = os.path.dirname(filename)
|
|
for include_path in [file_path] + include_dirs:
|
|
|
|
# If we find it, add it to list of files to check
|
|
temp_path = os.path.join(include_path, include_file)
|
|
if (os.path.isfile(temp_path)):
|
|
files = files + [temp_path]
|
|
num_includes = num_includes + 1 #For circular includes...
|
|
break
|
|
|
|
return kernel_hasher.hexdigest()
|
|
|
|
"""
|
|
Reads a text file and creates an OpenCL kernel from that
|
|
"""
|
|
def get_prepared_kernel(self, kernel_filename, kernel_function_name, \
|
|
prepared_call_args, \
|
|
include_dirs=[], verbose=False, no_extern_c=False,
|
|
**kwargs):
|
|
"""
|
|
Helper function to print compilation output
|
|
"""
|
|
def cuda_compile_message_handler(compile_success_bool, info_str, error_str):
|
|
self.logger.debug("Compilation returned %s", str(compile_success_bool))
|
|
if info_str:
|
|
self.logger.debug("Info: %s", info_str)
|
|
if error_str:
|
|
self.logger.debug("Error: %s", error_str)
|
|
|
|
self.logger.debug("Getting %s", kernel_filename)
|
|
|
|
# Create a hash of the kernel (and its includes)
|
|
kwargs_hasher = hashlib.md5()
|
|
kwargs_hasher.update(str(kwargs).encode('utf-8'));
|
|
kwargs_hash = kwargs_hasher.hexdigest()
|
|
kwargs_hasher = None
|
|
root, ext = os.path.splitext(kernel_filename)
|
|
kernel_hash = root \
|
|
+ "_" + CudaContext.hash_kernel( \
|
|
os.path.join(self.module_path, kernel_filename), \
|
|
include_dirs=[self.module_path] + include_dirs, \
|
|
verbose=verbose) \
|
|
+ "_" + kwargs_hash \
|
|
+ ext
|
|
cached_kernel_filename = os.path.join(self.cache_path, kernel_hash)
|
|
|
|
# If we have the kernel in our hashmap, return it
|
|
if (kernel_hash in self.kernels.keys()):
|
|
self.logger.debug("Found kernel %s cached in hashmap (%s)", kernel_filename, kernel_hash)
|
|
return self.kernels[kernel_hash]
|
|
|
|
# If we have it on disk, return it
|
|
elif (self.use_cache and os.path.isfile(cached_kernel_filename)):
|
|
self.logger.debug("Found kernel %s cached on disk (%s)", kernel_filename, kernel_hash)
|
|
|
|
with io.open(cached_kernel_filename, "rb") as file:
|
|
file_str = file.read()
|
|
module = cuda.module_from_buffer(file_str, message_handler=cuda_compile_message_handler)
|
|
|
|
kernel = module.get_function(kernel_function_name)
|
|
kernel.prepare(prepared_call_args)
|
|
self.kernels[kernel_hash] = kernel
|
|
return kernel
|
|
|
|
# Otherwise, compile it from source
|
|
else:
|
|
self.logger.debug("Compiling %s (%s)", kernel_filename, kernel_hash)
|
|
|
|
#Create kernel string
|
|
kernel_string = ""
|
|
for key, value in kwargs.items():
|
|
kernel_string += "#define {:s} {:s}\n".format(str(key), str(value))
|
|
kernel_string += '#include "{:s}"'.format(os.path.join(self.module_path, kernel_filename))
|
|
if (self.use_cache):
|
|
with io.open(cached_kernel_filename + ".txt", "w") as file:
|
|
file.write(kernel_string)
|
|
|
|
|
|
with Timer("compiler") as timer:
|
|
cubin = cuda_compiler.compile(kernel_string, include_dirs=include_dirs, no_extern_c=no_extern_c, cache_dir=False)
|
|
module = cuda.module_from_buffer(cubin, message_handler=cuda_compile_message_handler)
|
|
if (self.use_cache):
|
|
with io.open(cached_kernel_filename, "wb") as file:
|
|
file.write(cubin)
|
|
|
|
kernel = module.get_function(kernel_function_name)
|
|
kernel.prepare(prepared_call_args)
|
|
self.kernels[kernel_hash] = kernel
|
|
|
|
|
|
return kernel
|
|
|
|
"""
|
|
Clears the kernel cache (useful for debugging & development)
|
|
"""
|
|
def clear_kernel_cache(self):
|
|
self.kernels = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Class that holds data
|
|
"""
|
|
class CUDAArray2D:
|
|
"""
|
|
Uploads initial data to the CL device
|
|
"""
|
|
def __init__(self, stream, nx, ny, halo_x, halo_y, data):
|
|
|
|
self.nx = nx
|
|
self.ny = ny
|
|
self.nx_halo = nx + 2*halo_x
|
|
self.ny_halo = ny + 2*halo_y
|
|
|
|
#Make sure data is in proper format
|
|
assert np.issubdtype(data.dtype, np.float32), "Wrong datatype: %s" % str(data.dtype)
|
|
assert not np.isfortran(data), "Wrong datatype (Fortran, expected C)"
|
|
assert data.shape == (self.ny_halo, self.nx_halo), "Wrong data shape: %s vs %s" % (str(data.shape), str((self.ny_halo, self.nx_halo)))
|
|
|
|
#Upload data to the device
|
|
self.data = pycuda.gpuarray.to_gpu_async(data, stream=stream)
|
|
|
|
self.bytes_per_float = data.itemsize
|
|
assert(self.bytes_per_float == 4)
|
|
self.pitch = np.int32((self.nx_halo)*self.bytes_per_float)
|
|
|
|
|
|
"""
|
|
Enables downloading data from CL device to Python
|
|
"""
|
|
def download(self, stream, async=False):
|
|
#Copy data from device to host
|
|
if (async):
|
|
host_data = self.data.get_async(stream=stream)
|
|
return host_data
|
|
else:
|
|
host_data = self.data.get(stream=stream)#, pagelocked=True) # pagelocked causes crash on windows at least
|
|
return host_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
A class representing an Arakawa A type (unstaggered, logically Cartesian) grid
|
|
"""
|
|
class SWEDataArakawaA:
|
|
"""
|
|
Uploads initial data to the CL device
|
|
"""
|
|
def __init__(self, stream, nx, ny, halo_x, halo_y, h0, hu0, hv0):
|
|
self.h0 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, h0)
|
|
self.hu0 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, hu0)
|
|
self.hv0 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, hv0)
|
|
|
|
self.h1 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, h0)
|
|
self.hu1 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, hu0)
|
|
self.hv1 = CUDAArray2D(stream, nx, ny, halo_x, halo_y, hv0)
|
|
|
|
"""
|
|
Swaps the variables after a timestep has been completed
|
|
"""
|
|
def swap(self):
|
|
self.h1, self.h0 = self.h0, self.h1
|
|
self.hu1, self.hu0 = self.hu0, self.hu1
|
|
self.hv1, self.hv0 = self.hv0, self.hv1
|
|
|
|
"""
|
|
Enables downloading data from CL device to Python
|
|
"""
|
|
def download(self, stream):
|
|
h_cpu = self.h0.download(stream, async=True)
|
|
hu_cpu = self.hu0.download(stream, async=True)
|
|
hv_cpu = self.hv0.download(stream, async=False)
|
|
|
|
return h_cpu, hu_cpu, hv_cpu
|
|
|
|
|